

Aug 24, 2017

ZWEK alloy fabrication procedure

PLOS One

DOI

dx.doi.org/10.17504/protocols.io.iepcbdn

Lumei Liu¹, Youngmi Koo¹, Boyce Collins¹, Zhigang Xu¹, Jagannathan Sankar¹, Yeoheung Yun¹

¹National Science Foundation-Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA FIT BEST Laboratory, Department of Chemical, Biological, and Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA

Lumei Liu

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

OPEN ACCESS

DOI: https://dx.doi.org/10.17504/protocols.io.iepcbdn

External link: https://doi.org/10.1371/journal.pone.0182914

Protocol Citation: Lumei Liu, Youngmi Koo, Boyce Collins, Zhigang Xu, Jagannathan Sankar, Yeoheung Yun 2017. ZWEK alloy fabrication procedure. **protocols.io https://dx.doi.org/10.17504/protocols.io.iepcbdn**

Manuscript citation:

Liu L, Koo Y, Collins B, Xu Z, Sankar J, Yun Y (2017) Biodegradability and platelets adhesion assessment of magnesium-based alloys using a microfluidic system. PLoS ONE 12(8): e0182914. doi: 10.1371/journal.pone.0182914

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

Created: June 12, 2017

Last Modified: November 09, 2017

Protocol Integer ID: 6319

Keywords: molten mg, fabrication procedure melting, cast alloy, oxidation reactions of molten mg, alloying element, extrusion temperature, alloying operation, extrusion temperature 400 °c, additional alloy, steel tube mold, minutes before additional alloy, zwek, extrusion, high purity mg, melt, extrusion ratio, mg, solution heat treat, low carbon steel

Abstract

Melting and alloying operations were performed in a low carbon steel crucible in an inert ultra-high purity argon environment, preventing the oxidation reactions of molten Mg. High purity Mg (99.97%) was heated to 710°C for 10 minutes until the slug was completely melted. Each alloying element was added separately and kept for 10 minutes before additional alloy was added to ensure complete dissolution of all alloying elements. Automated stirring was applied for 15 minutes to ensure a homogeneous distribution of elements throughout the melt. The melt was then raised to 730 °C, held for 15 minutes and then poured into a steel tube mold. A solution heat treat was carried out on the as-cast alloy at 510 °C for 10 h before it was extruded. The extrusion was conducted with an extrusion ratio 10, extrusion temperature 400 °C and ramp speed 1 mm/s.

Attachments

S1_Protocol.doc.docx

14KB

Troubleshooting

