

Sep 07, 2022

Version 3

Workflow for proteomic analysis of purified lysosomes in cells lacking GRN V.3

DOI

dx.doi.org/10.17504/protocols.io.ewov14b7kvr2/v3

Sharan Swarup¹, J. Wade Harper¹

¹Department of Cell Biology Harvard Medical School Boston MA 02115

Harper JW

harvard university

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.ewov14b7kvr2/v3

Protocol Citation: Sharan Swarup, J. Wade Harper 2022. Workflow for proteomic analysis of purified lysosomes in cells lacking GRN . **protocols.io** https://dx.doi.org/10.17504/protocols.io.ewov14b7kvr2/v3 Version created by Harper JW

Manuscript citation:

Wyant, G.A., Abu-Remaileh, M., Frenkel, E.M., Laqtom, N.N., Dharamdasani, V., Lewis, C.A., Chan, S.H., Heinze, I., Ori, A., and Sabatini, D.M. (2018). Nufip1 is a ribosome receptor for starvation-induced ribophagy. Science 360, 751–758.

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: August 16, 2022

Last Modified: May 31, 2024

Protocol Integer ID: 68725

Keywords: Proteomic analysis, Purified lysosomes, ASAPCRN, proteomics after lysosome purification, lysosome purification, purified lysosome, lysosomes in cell, using proteomic, lysosome, proteomic analysis, proteomic, such lysosome, tmem192 protein, major degradative organelle within eukaryotic cell, context of hela cell, major degradative organelle, eukaryotic cell, hela cell, metabolomic analysis, terminus with an epitope tag, protein, grn gene, organelle, epitope tag, cell, purification, such cell

Disclaimer

DISCLAIMER - FOR INFORMATIONAL PURPOSES ONLY; USE AT YOUR OWN RISK

The protocol content here is for informational purposes only and does not constitute legal, medical, clinical, or safety advice, or otherwise; content added to <u>protocols.io</u> is not peer reviewed and may not have undergone a formal approval of any kind. Information presented in this protocol should not substitute for independent professional judgment, advice, diagnosis, or treatment. Any action you take or refrain from taking using or relying upon the information presented here is strictly at your own risk. You agree that neither the Company nor any of the authors, contributors, administrators, or anyone else associated with <u>protocols.io</u>, can be held responsible for your use of the information contained in or linked to this protocol or any of our Sites/Apps and Services.

Abstract

Lysosomes are a major degradative organelle within eukaryotic cells. Previous work has developed a method wherein the TMEM192 protein is tagged on its C-terminus with an epitope tag in order to immunopurify (IP) lysosomes from cell extracts.1 This process is referred to as Lyso-IP. Such lysosomes can be used for proteomic analysis or for metabolomic analysis. The Lyso-IP is adapted from a previous reported method (Wyant et al., 2018). Here we also describe processing steps using proteomics after lysosome purification in the context of HeLa cells lacking the GRN gene. Such cells can be produced using the following protocol: DOI: dx.doi.org/10.17504/protocols.io.4r3l2oxqqv1y/v1.

Attachments

Guidelines

REFERENCES

- 1. Abu-Remaileh M, Wyant GA, Kim C, Lagtom NN, Abbasi M, Chan SH, Freinkman E, Sabatini DM. Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes. Science. 2017 Nov 10;358(6364):807-813. doi: 10.1126/science.aan6298. Epub 2017 Oct 26. PMID:29074583; PMCID: PMC5704967.
- 2. Wentao Dong, Nouf Laqtom, Monther Abu-Remaileh. Sample preparation protocol for lipidomics harvesting using lysosome immunoprecipitation (Lipidomics LysolP, updated 02/09/21). protocols.io https://protocols.io/view/sample-preparation-protocol-for-lipidomics-harvest-br9ym97w
- 3. McAlister, G. C. et al. MultiNotch MS3 Enables Accurate, Sensitive, and Multiplexed Detection of Differential Expression across Cancer Cell Line Proteomes. Analytical chemistry 86, 7150-7158 (2014).

Materials

Reagents:

- Phosphate Buffered Saline: powder for 5 L of 10X Santa Cruz Biotechnology Catalog #sc-24947
- ★ TCEP-HCI Gold Biotechnology Catalog #TCEP2
- Acetonitrile Merck MilliporeSigma (Sigma-Aldrich) Catalog #34851
- Sodium Chloride Merck MilliporeSigma (Sigma-Aldrich) Catalog #S9888
- X Lysyl EndopeptidaseR (Lys-C) Wako Catalog #129-02541
- EPPS Merck MilliporeSigma (Sigma-Aldrich) Catalog #E9502
- 2-Chloroacetamide Merck MilliporeSigma (Sigma-Aldrich) Catalog #C0267
- Pierce™ High pH Reversed-Phase Peptide Fractionation Kit Thermo Fisher Catalog #84868
- X TMT10plex™ Isobaric Label Reagent Set Thermo Fisher Scientific Catalog #90406
- Bio-Rad Protein Assay Dye Reagent Concentrate Bio-Rad Laboratories Catalog #5000006
- Sep-Pak C18 1 cc Vac Cartridge 50 mg Sorbent per Cartridge 55-105 μm 100/pk Waters Catalog #WAT054955
- 3M™ Empore™ C18 47 mm Extraction Disc Model 2215 20 pack 3 packs per case 3M corporation Catalog #2215

A	В	С		
REAGENT or RESOURCE	SOURCE	IDENTIFIER		
Chemicals, Peptides, and Recombinant Proteins				
KCL	Sigma-Aldrich	P9541		
PBS (10x)	Santa Cruz	sc-24947		
TCEP	Gold Biotechnology	TCEP2		
Formic Acid (FA)	Sigma-Aldrich	94318		
Acetonitrile (ACN)	Sigma-Aldrich	34851		
Sodium Chloride	Sigma-Aldrich	S9888		
Trypsin	Promega	Custom order		
Lys-C	Wako Chemicals	129-02541		
EPPS	Sigma-Aldrich	E9502		
2-Chloroacetamide	Sigma-Aldrich	C0267		

А	В	С	
Critical Commercial Assays			
Pierce™ High pH Reversed-Phase Peptide Fractionation Kit	Thermo Fisher Scientific	84868	
Tandem Mass Tags	Thermo Fisher Scientific	90406	
Bio-Rad Protein Assay Dye Reagent Concentrate	Bio-Rad	5000006	
Other			
Sep-Pak C18 1cc Vac Cartridge, 50 mg			
Empore™ SPE Disks C18	3M Bioanalytical Technologies	2215	

А	В
BUFFERS:	
1. KPBS buffer:	
Compound	[Compound]fin al
KH2PO4	10 mM
KCI	136 mM
Phosphatase Inhibitors	1 x
Protease Inhibitors	1 x

Troubleshooting

Cell culture

Grow the appropriate cells (e.g. HeLa with or without the GRN gene created by gene editing, see DOI: dx.doi.org/10.17504/protocols.io.4r3l2oxqqv1y/v1) expressing TMEM192-3xHA in DMEM containing 10% FBS

Note

One 15 cm plate of cells (80% confluence) is used per replicate.

Lyso-IP

- 2 All buffers were supplemented with protease and phosphatase inhibitors (Roche).
- 3 Cells at 80% confluency were harvested on ice by scraping and washed once with Phosphate buffered saline (PBS) containing protease inhibitors (Roche).
- The cells were pelleted at $\textcircled{300 \times g}$ for 00:05:00 at $\textcircled{4 \circ C}$.

5m

- The cell pellet was resuspended in 2 nmL KPBS buffer and lysed using 30 strokes in a 2 mL Potter-Elvehjem homogenizer.
- 7 The lysed cells were spun down at \$ 1000 x g for \$ 00:05:00 at \$ 4 °C .

5m

- The pellet was discarded and the protein concentration of the lysate was determined by Bradford assay.

12

Note

- The lysate/magnetic bead mixture was placed on gentle rotation for 01:00:00, at and beads were separated from the lysate using a magnetic stand.

 The beads were washed twice with KPBS containing 300 mM NaCl and once with KPBS buffer.

Elutes were snap frozen in liquid nitrogen and stored in 8 -80 °C until further processing.

Trypsinization 13 Reduce lysates for 00:30:00 at 25 °C (2 Room temperature) with [M] 5 millimolar (mM) TCEP. 14 Alkylate cysteine residues with [M] 20 millimolar (mM) Chloroacetamide for 00:30:00 at Room temperature. 15 Add TCA to eluates to a final concentration of 20% and place On ice at 4 °C for at least 01:00:00.

30m

Pellet the proteins for $\bigcirc 00:30:00$ at maximum speed at $4 \circ C$.

30m

Note

Note: It is common not to observe a visible pellet.

Resuspend the pellets in 4 volumes of ice cold 10% TCA and pellet by centrifugation at 4 °C for 00:10:00 at maximum speed. Aspirate as before.

10m

8

Resuspend the pellets in 4 volumes of ice cold methanol and pellet by centrifugation at 4 °C for 00:10:00 at maximum speed. Aspirate as before.

10m

20 Repeat the methanol wash.

.

- Aspirate methanol as before and air dry the remaining $\Delta 30~\mu$ L $\Delta 40~\mu$ L of solution (speed-vac can also be used to dry sample).
- 22 Resuspend the dried pellets in Δ 50 μL , [M] 200 millimolar (mM) EPPS, (ph 8.0).

2h

07

Labeling

1h 15m

24 Add Δ 3 μ L - Δ 4 μ L of the TMT reagent and Δ 15 μ L of 100% ACN to each Δ 50 μ L sample.

25 Incubate for 01:00:00 at 8 Room temperature.

1h

- Stop the reaction with $4 \mu L$ of hydroxylamine 5% for 00:15:00 at Room temperature .
- 27 Combine samples and dry in a speed-vac.

Basic-pH RP peptide fractionation kit (follow manufacturer's instructions)

- Follow manufacturer's instructions (Thermo Cat# 84868).
- 29 Use elution: 17.5% ACN, 20% ACN, 22.5% ACN, 25% ACN, 27.5% ACN and 70% ACN.
- 30 Speed vac individual samples to dryness.
- 31 Proceed to stage-tip.

Stage TiP

- Resuspend samples in $\underline{\underline{A}}$ 100 $\mu \underline{L}$ of 5% FA, 5% ACN. Check to ensure that the pH of the samples is ~pH3 (or lower) using pH strips.
- 33 Perform C-18 cleanup:
- 33.1 a. Wash C-18 with Δ 100 μ L of 100% methanol.

15m

- 33.3 c. Equilibrate C-18 with \perp 100 μ L of 5% ACN 5% FA.
- 33.4 d. Load sample on to C-18 to bind peptides.
- 33.5 e. Collect flow through and freeze.
- 33.6 f. Wash bound peptides on C-18 with \perp 50 μ L of 5% ACN 5% FA.
- 33.7 g. Elute peptides off C-18 with \perp 50 μ L of 75% ACN/5 % FA.
- 34 3. Dry down eluted peptides in speed-vac.
- 35 4. Re-constitute peptides in \perp 10 μ L of 5% ACN 5% FA.

Mass spectrometry

36

Note

The analysis of peptides by mass spectrometry will depend on the type of instrument/platform used. Typical instrument settings for analysis on a Thermo Fusion Lumos instrument are provided in the following section.

Inject $\[\] \]$ for each LC-MS/MS analysis using available mass spectrometer with a 120-minute online LC separation.

- 37 Search raw data against UniProt human protein database using any proteomic analysis software with the following parameters:
 - Up to 3 missed cleavages allowed for trypsin/LysC digestion
 - Carbamidomethyl (C), TMT (N-term peptide and K) set as a fixed modification
 - Oxidation (M) set as variable modifications

Extract signal to noise intensity values of each TMT reporter and identified proteins, and further calculate the ratio of each condition to the control sample's intensity.

Note

This process will depend on the type of analysis software employed with the specific MS platform being used.

Instrument settings

2h 30m

- Collect mass spectrometry data using an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific, San Jose, CA) coupled to a Proxeon EASY-nLC1200 liquid chromatography (LC) pump (Thermo Fisher Scientific).
- Separate the peptides on a $\[\] \]$ inner diameter microcapillary column packed in house with $\[\] \]$ of Accucore150 resin ($\[\] \]$ 2.6 $\[\] \]$, 150 Å, ThermoFisher Scientific, San Jose, CA) with a gradient consisting of 5%–21% (ACN, 0.1% FA) over a total $\[\] \]$ 02:30:00 run at $\[\] \]$ 500 nL/min .

2h 30m

Note

Details of typical instrument parameters are provided below. For Multi-Notch MS3-based TMT analysis3, the scan sequence began with an MS1 spectrum (Orbitrap analysis; resolution 60,000 at 200 Th; mass range 375–1500 m/z; automatic gain control (AGC) target 5Å~105; maximum injection time 50 ms) unless otherwise stated in the instrument parameters in each supplemental table.

41 Select the precursors for MS2 analysis using a Top10 method.

Note

MS2 analysis consisted of collision-induced dissociation (quadrupole ion trap analysis; Turbo scan rate; AGC 2.0Å~104; isolation window 0.7 Th; normalized collision energy (NCE) 35; maximum injection time 90 ms).

Use the monoisotopic peak assignment and exclude the previously interrogated precursors using a dynamic window (150 s \pm 7898 ppm) and perform the dependent scans on a single charge state per precursor.

- 43 Following acquisition of each MS2 spectrum, collect a synchronous-precursor-selection (SPS) MS3 scan on the top 10 most intense ions in the MS2 spectrum.
- 44 Fragment the MS3 precursors by high energy collision-induced dissociation (HCD) and analyze using the Orbitrap (NCE 65; AGC 3Å~105; maximum injection time 150 ms, resolution was 50,000 at 200 Th).

Data Analysis

45

Note

Data analysis will be platform and purpose specific.