

Jan 09, 2026

Whole-cell patch-clamp recordings

DOI

dx.doi.org/10.17504/protocols.io.dm6gpmnpgzp/v1

Hongfei Xu¹, Akio Mori¹, Robert Edwards¹

¹University of California San Francisco

Akio Mori

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

[Create free account](#)

OPEN ACCESS

DOI: <https://dx.doi.org/10.17504/protocols.io.dm6gpmnpgzp/v1>

Protocol Citation: Hongfei Xu, Akio Mori, Robert Edwards 2026. Whole-cell patch-clamp recordings. [protocols.io](#)
<https://dx.doi.org/10.17504/protocols.io.dm6gpmnpgzp/v1>

License: This is an open access protocol distributed under the terms of the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: November 19, 2025

Last Modified: January 12, 2026

Protocol Integer ID: 233013

Keywords: preparation of hippocampal slice, hippocampal slice, clamp recording, cell recording, ca1 pyramidal neuron, clamp recordings this protocol, neuron, cell patch, mediated epsc, cell, stimulation, stimulation in the stratum radiatum

Abstract

This protocol describes the preparation of hippocampal slices from mice for whole-cell patch-clamp recordings. Whole-cell recordings are made from CA1 pyramidal neurons, with AMPAR-mediated EPSCs evoked by stimulation in the stratum radiatum and monitored under voltage-clamp conditions.

Materials

Buffers

Cutting aCSF

- 210 mM sucrose
- 2.5 mM KCl
- 0.5 mM CaCl₂
- 7 mM MgSO₄
- 1.25 mM NaH₂PO₄
- 25 mM NaHCO₃
- 7 mM D-glucose
- 1.3 mM ascorbic acid
- Saturate with 95% O₂/5% CO₂
- pH 7.4, 305–310 mOsm

Recording aCSF

- 119 mM NaCl
- 2.5 mM KCl
- 2.5 mM CaCl₂
- 1.3 mM MgSO₄
- 1 mM NaH₂PO₄
- 26.2 mM NaHCO₃
- 11 mM d-glucose
- Saturate with 95% O₂/5% CO₂
- pH 7.4, 305–320 mOsm

Pipette solution

- 135 mM CsMeSO₃
- 8 mM NaCl
- 0.3 mM EGTA
- 4 mM Mg-ATP
- 0.3 mM Na-GTP
- 5 mM QX-314
- 0.1 mM spermine
- 10 mM HEPES
- pH 7.4, 290–295 mOsm

Troubleshooting

Patch pipette preparation

- 1 Pull pipettes from borosilicate glass using a Flaming/Brown puller (P-87). Fill pipettes with pipette solution; typical resistance 3–5 MΩ.

Animal preparation and brain slicing

- 2 Anesthetize P21–P35 mice with ketamine/xylazine (i.p.).
- 3 Perfusion with ice-cold cutting aCSF saturated with 95% O₂/5% CO₂.
- 4 Dissect brains in ice-cold cutting aCSF. Slice into 300 µm near-horizontal sections using a vibratome in oxygenated cutting aCSF. Transfer slices to a holding chamber containing recording aCSF.
- 5 Incubate slices at 32°C for 30 min, then maintain at room temperature until recording. Perform a micro-cut between CA1 and CA3 to prevent network propagation.

Whole-cell recordings

- 6 Perform recordings in recording aCSF saturated with 95% O₂/5% CO₂ at 34 ± 0.5°C, perfusion rate 3 mL/min.
- 7 Evoke AMPAR-mediated responses at -70 mV holding potential in the presence of 10 µM AP-V and 100 µM picrotoxin.
 - 7.1 Fill the recording pipette with intracellular solution and check the recording pipette under the microscope to remove any residual air bubbles.
 - 7.2 Apply positive pressure using 1ml surge to clear the path, and once the recording electrode approaches the cell, the positive pressure will create a dimple as it touches.
 - 7.3 Remove the positive pressure immediately and watch for a slight resistance increase as positive pressure relieve.
 - 7.4 Apply gentle suction and monitor pipette resistance; once it exceeds 1 GΩ, hold the cells at -68 mV immediately and release the suction.

- 7.5 Apply stronger, brief negative suction to rupture the membrane patch.
Note: The pipette now has access to the cell's interior, forming the whole-cell configuration.
- 7.6 Allow intracellular solution to exchange (2 mins) before recording.
- 8 Stimulate the stratum radiatum using a tungsten bipolar electrode.
- 9 Monitor membrane current, input resistance, and series resistance. Discard cells if series resistance exceeds $30\text{ M}\Omega$. Accept recordings only if seal resistance $>1\text{ G}\Omega$.

Data acquisition

- 10 Acquire data with MultiClamp 700B amplifier.
- 11 Filter at 2 kHz and digitize at 10 kHz. Store and analyze data using IgorPro v6.3.4.1. Peak EPSC amplitudes are determined from recorded currents