Mar 24, 2020 Version 1

O Viral Sequencing, from Gunk to Graph V.1

DOI

dx.doi.org/10.17504/protocols.io.bd3yi8pw

David A Eccles¹ ¹Malaghan Institute of Medical Research (NZ)

Coronavirus Method De...

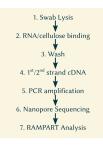
David A Eccles

Malaghan Institute of Medical Research (NZ)

DOI: dx.doi.org/10.17504/protocols.io.bd3yi8pw

Protocol Citation: David A Eccles 2020. Viral Sequencing, from Gunk to Graph. protocols.io <u>https://dx.doi.org/10.17504/protocols.io.bd3yi8pw</u>

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited


Protocol status: In development We are still developing and optimizing this protocol

Created: March 23, 2020

Last Modified: March 24, 2020

Protocol Integer ID: 34648

Keywords: SARS-CoV-2, COVID-19, nanopore, sequencing,

Abstract

This is a fast "gunk to graph" protocol for analysing viral RNA from nasopharyngeal swabs. The approach involves swab lysis and inactivation at the point of sampling, uses a cellulose binding / wash protocol to reduce extraction cost, incorporates sample-specific barcodes during first-strand synthesis, nanopore rapid-attachment primers during PCR amplification, and nanopore sequencing with parallel RAMPART analysis for fast assembly and phylogenetics.

Materials

MATERIALS

🔀 Q5 Hot Start High-Fidelity 2X Master Mix - 500 rxns New England Biolabs Catalog #M0494L

X MinION sequencer Oxford Nanopore Technologies

X ONT MinION Flow Cell R9.4.1 Oxford Nanopore Technologies Catalog #FLO-MIN106D

Additional materials TBA.

Safety warnings

This protocol is UNTESTED, and is in the early stages of development. Do not trust the protocol; question everything.

Assume samples are potentially infectious during extraction, and make sure to use proper sterile technique to avoid cross-contamination.

Swab Lysis		
1	Prepare a 📕 1.5 mL centrifuge tube with heated lysis buffer and a cellulose disc	
1.1	 Add ▲ 500 µL lysis / RNAse inactivation buffer (Twitter reference) to 1.5ml centrifuge tube: IMJ 10 millimolar (mM) Tris IMJ 10 millimolar (mM) EDTA IMJ 0.5 % volume SDS IMJ 150 millimolar (mM) NaCl OR ▲ 500 µL extraction buffer #2 (see paper): IMJ 800 millimolar (mM) guanidine hydrochloride IMJ 50 millimolar (mM) Tris [pH 8] IMJ 0.5 % volume Triton X100 	
1.2	 Im 1 % volume Tween-20 Add a → + 3 mm diameter punched disc from Whatman #1 filter paper (see paper) 	
1.3 2	Preheat <u>I.5 mL</u> tube to <u>60 °C</u> Collect sample using a sterile polystyrene swab with a 30mm breakpoint (e.g. <u>Puritan</u>	
RNA	25-3606-U; PurFlock Ultra 6" Sterile Elongated Flock Swab w/Polystryene Handle, 30mm Breakpoint).	
3	 Transfer disc to a new 1.5 mL tube containing 200 µL wash buffer using a pipette tip to remove contaminants: [M] 10 millimolar (mM) Tris [pH 8.0] [M] 0.1 % volume Tween-20 	
4	Incubate tube at Room temperature for 👀 00:01:00	

cDNA Synthesis

- 5 Add the following additional components into the $\boxed{_ 200 \ \mu L}$ PCR tube (see the Nanopore protocol for Sequence-specific cDNA-PCR Sequencing (SQK-PCS109)) in a
 - $\stackrel{\text{L}}{=}$ 11 µL reaction:
 - $\Delta 1 \mu L$ X [M] 2 micromolar (μM) reverse primers
 - Δ 1 μL X M 10 millimolar (mM) dNTPs
 - Δ 9 μL RNAse-free water

Reverse primers should be prefixed with sample-specific barcode sequences (if used) and the ONT reverse anchor sequence, i.e. [5' - ACTTGCCTGTCGCTCTATCTTC - [barcode] - [sequence-specific] - 3']

6 Mix gently *by flicking the tube* and spin down 🚫 00:00:05

- 7 Denature RNA and anneal primers at \$65 °C for 00:05:00 and then snap cool on a pre-chilled freezer block for 00:01:00
- 8 In a separate tube, mix together the following in an $4 \times 8 \mu$ reaction:
 - Δ 4 μL 5X RT Buffer
 - A 1 µL RNAseOUT
 - Δ 1 μL Nuclease-free water
 - $\Delta 2 \mu L$ x [M] 10 micromolar (μM) Strand-switching primer (SSP)

Note: It might be possible to instead carry out only the first-strand synthesis (i.e. excluding SSP), then use a forward primer, tailed with sample-specific barcode sequences (if used) and the ONT forward anchor sequence, i.e. [5' - TTTCTGTTGGTGCTGATATTGC - [barcode] - [sequence-specific] - 3']. One-Step RT-PCR sequencing kits may help with this (e.g. **OneTaq One-Step RT-PCR Kit**). For more

	details about the reverse anchor sequence and four-primer amplicon sequencing, see the Nanopore protocol for <u>Four-primer PCR (SQK-PSK004 or SQK-PBK004)</u> .
9	Mix gently by flicking the tube and spin down 00:00:05
10	Add the strand-switching buffer to the snap-cooled, annealed RNA, mix by <i>flicking the tube</i> and spin down
11	Incubate at 42 °C for 00:02:00
12	Add $\boxed{1}$ μ L of Maxima H Minus Reverse Transcriptase, to a total volume of $20 \ \mu$ L
13	Mix gently by <i>flicking the tube</i> and spin down 00:00:05

14 Incubate using the following protocol:

Cycle step	Temp eratu re	Time	No. of cycle s
Rever se trans cripti on and stran d- switc hing	42° C	90 mins	1
Heat inacti vatio n	85° C	5 mins	1
Hold	4° C	8	

Thermal cycler settings for reverse transcription and strand switching

PCR amplification

- 15 In four new \angle 200 µL PCR tubes, prepare the following reaction at
 - **\blacksquare** Room temperature in a **\blacksquare** 50 μ L reaction:
 - Δ 25 μL 2X Q5 Hot Start High-Fidelity Master Mix
 - $\cancel{4}$ 1.5 μ L cDNA primer (cPRM)
 - Δ 18.5 μL Nuclease-free water
 - $4 5 \mu L$ Reverse-transcribed cDNA from the previous step (pool, or single sample)
- 16 Amplify using the following cycling conditions:

	Cycle step	Temp eratu re	Time	No. of cycle s
	Initial denat uratio n	95 °C	30 secs	1
	Denat uratio n	95 °C	15 secs	10- 18*
_	Anne aling	62 °C	15 secs	10- 18*
	Exten sion	65 °C	50 secs per kb	10- 18*
	Final exten sion	65 °C	6 mins	1
_	Hold	4 °C	ω	

Thermal cycler settings for PCR amplification

* The recommended starting point is 14 cycles - adjust this depending on experimental needs.

- 17 Add $\underline{\Box}_{1 \mu L}$ of NEB Exonuclease 1 (20 units) directly to each PCR tube to remove unextended primers. Mix by *pipetting*.
- 18
 Incubate the reaction at \$ 37 °C
 for
 Image: 00:15:00
 , followed by
 \$ 80 °C
 for

 Image: 00:15:00
 Image: 00:

Bead Cleanup			
19	Add 160 μ l of resuspended AMPure XP beads to the $\boxed{1.5 \text{ mL}}$ tube and mix by <i>pipetting</i>		
20	Incubate on a gentle agitator (e.g. hula mixer or rotator mixer) for $00:05:00$ at Room temperature		
21	Spin down 🕑 00:00:05 the sample and pellet on a magnet. Keep the tube on the magnet, and pipette off the supernatant.		
22	Keep the tube on the magnet and wash the beads with $\boxed{_200 \ \mu L}$ of freshly-prepared IM1 70 % volume ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.		
23	Repeat the previous step: wash with $200 \ \mu L$ [M] 70 % volume ethanol , and discard the ethanol / wash liquid.		
24	Spin down 🕑 00:00:05 and place the tube back on the magnet. Pipette off any residual ethanol. Allow to dry for 🕑 00:00:30 [at most] but do not dry the pellet to the point of cracking (the magnetic beads should just start to lose their shiny sheen).		
25	Remove the tube from the magnetic rack and resuspend pellet in $\boxed{12 \ \mu L}$ of Elution Buffer (EB).		
26	Incubate at Room temperature for 00:10:00		
27	Pellet beads on magnet 👀 00:05:00 until the eluate is clear and colourless		
28	While still on the magnet, carefully remove and retain $\boxed{4}$ 12 μ L of eluate into a clean $\boxed{4}$ 1.5 mL Eppendorf DNA LoBind tube		

29 Quantify 1 µl of the amplified cDNA library using the Quantus Fluorometer using the ONE dsDNA assay (see <u>ncov 2019 sequencing protocol, step 16</u>)

Adapter Addition

- 30 Add $4_{1 \mu L}$ of Rapid Adapter (RAP) to the amplified cDNA library
- 31 Mix by *pipetting* and spin down 💮 00:00:05

32 Incubate the reaction for 😒 00:05:00 at 📱 Room temperature

33 Store the prepared library Con ice until ready to load onto a flow cell.

Nanopore Sequencing

- 34 Load <u>Load</u> sequencing library onto a MinION flow cell (see <u>ncov 2019 sequencing</u> protocol, step 21)
- 35 Start the sequencing run using MinKNOW, using SQK-PCS109 as the sample preparation protocol (see <u>ncov 2019 sequencing protocol, step 22</u>)

RAMPART Analysis

36 Analyse the run results using RAMPART (see <u>https://artic.network/ncov-2019/ncov2019-using-rampart.html</u>)