

May 10, 2018

Viral Genome Release and Native Viral Particle Conversion Measured Through Temperature Ramping in Real Time PCR Machine

DOI

dx.doi.org/10.17504/protocols.io.p2xdqfn

Antonio Real-Hohn¹

¹Medizinische Universität Wien

Antonio Real-Hohn

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.p2xdqfn

Protocol Citation: Antonio Real-Hohn 2018. Viral Genome Release and Native Viral Particle Conversion Measured Through Temperature Ramping in Real Time PCR Machine. protocols.io https://dx.doi.org/10.17504/protocols.io.p2xdqfn

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: May 10, 2018

Last Modified: May 10, 2018

Protocol Integer ID: 12087

Keywords: temperature ramping in real time pcr machine, native viral particle conversion, viral genome release, real time pcr machine, fluorescent probes for rna, inducing genome uncoating, pcr, temperature ramping, common wet lab device, genome uncoating, time pcr, fluorescent probe, temperature

Abstract

This protocol was developed to use common wet lab device (Real Time PCR machine) to detect viral genome release and native viral particle conversion. We used temperature ramping for inducing genome uncoating and fluorescent probes for RNA/DNA and/or proteins, to detect genome and/or capsid changes.

Guidelines

Prepare a master mix (3.5X) with virus and probes in thermo stable buffer

Final volume 70 µL

Add replicates to 96-well PCR plate (Replicates 3 X 20 µL)

Seal the plate

Place the plate in Real Time PCR Equipment

Open the software and run a melting curve assay.

Materials

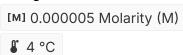
MATERIALS

- **⊠** 500g Potassium Phosphate (Dibasic) **G-Biosciences Catalog** #RC-081
- \$\times 500q Potassium Phosphate (Monobasic) **G-Biosciences Catalog #**RC-083
- SYTO 82 Orange Fluorescent Nucleic Acid Stain Thermo Fisher Scientific Catalog #S11363
- SYPRO Orange Protein Gel Stain Thermo Fisher Scientific Catalog #S6650

Troubleshooting

Safety warnings

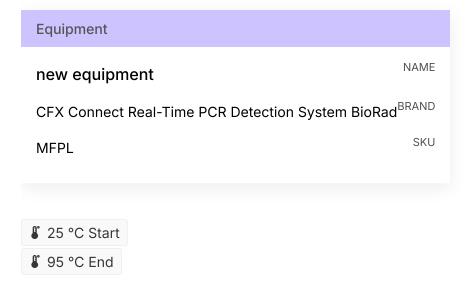
All the material must be decontaminated before trashing.



Mix Itens in 200 µL tubes and then transfere to a 96-well Real Time PCR Plate

Purified Virus (Rhinovirus, Poliovirus, Coxsackie-virus, etc.)

2 Fluorescent Probe for DNA/RNA (SYTO-82) and/or Fluorescent Probe for Protein (SYPRO Orange)



3 Viral Thermo Stable Buffer (Phosphate, Cacodylate, etc.) Potassium Phosphate Buffer

Run a melting curve program in the equipment software. Starting with 25 °C for 5 minutes and ramping 0.5 °C degrees each 5 seconds.

4 Temperature Ramping

5