
Aug 03, 2020

# Thawing an organoid cryovial

DOI

dx.doi.org/10.17504/protocols.io.bh3jj8kn



Emily Souster<sup>1</sup>, Hazel Rogers<sup>1</sup>, Laura Letchford<sup>1</sup>, Sara Vieira<sup>1</sup>, Maria Garcia-Casado<sup>1</sup>, Mya Fekry-Troll<sup>1</sup>, Charlotte Beaver<sup>1</sup>, Rachel Nelson<sup>1</sup>, Hayley Francies<sup>1</sup>, Mathew Garnett<sup>1</sup>

<sup>1</sup>Wellcome Sanger Institute

Cellular Generation and ... Organoid and Assembloid

Emily Souster





DOI: dx.doi.org/10.17504/protocols.io.bh3jj8kn

**Protocol Citation:** Emily Souster, Hazel Rogers, Laura Letchford, Sara Vieira, Maria Garcia-Casado, Mya Fekry-Troll, Charlotte Beaver, Rachel Nelson, Hayley Francies, Mathew Garnett 2020. Thawing an organoid cryovial. **protocols.io** 

#### https://dx.doi.org/10.17504/protocols.io.bh3jj8kn

**License:** This is an open access protocol distributed under the terms of the **<u>Creative Commons Attribution License</u>**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: June 30, 2020

Last Modified: August 03, 2020

Protocol Integer ID: 38731

## Abstract

This SOP defines the procedure for thawing a frozen cryovial of organoids into 1 well of a 6 well plate for further culture. It has been developed by the organoid derivation team within the Cellular Generation and Phenotyping Group at the Wellcome Sanger Institute. The team has extensive experience passaging and expanding organoid models. The method described has mainly been used for cancer organoids with successful propagation of organoids derived from colon, pancreas and oesophageal tumours.

## Guidelines

- We use 5 ml Eppendorf tubes to help with sterility. However, if you do not have access to these tubes any
  alternative sterile tubes of appropriate volume can be used.
- It is useful to keep a bottle of cold PBS in the fridge as this can be used to resolve pelleting issues.
   Resuspending a 'hazy' pellet in cold PBS can help to re-melt the BME2, resulting in a more distinct cell pellet after centrifugation.

## Materials

### MATERIALS

Costar<sup>®</sup> 6-Well Flat-Bottom Plate, Tissue Culture-Treated 50 Plates **Stemcell Technologies Catalog #**38015

X DPBS no calcium no magnesium Thermo Fisher Scientific Catalog #14190144

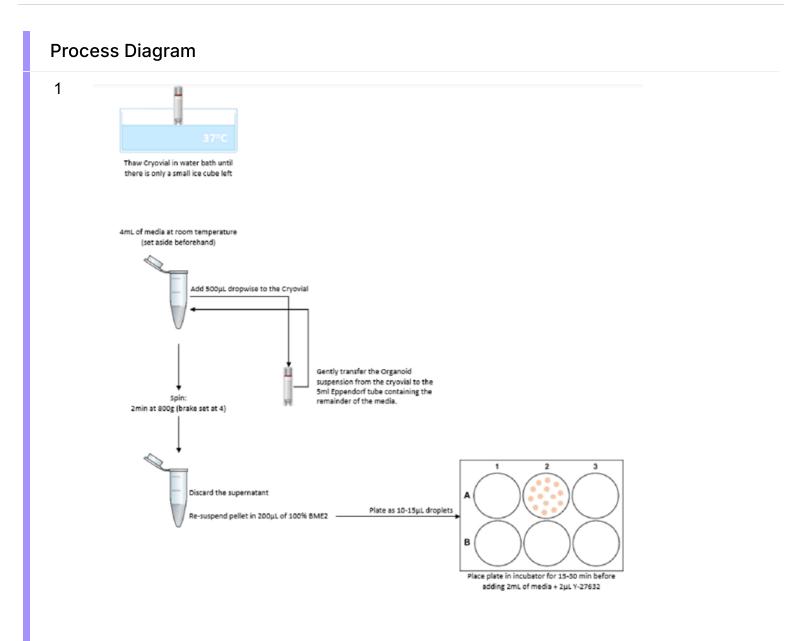
Cultrex<sup>®</sup> Reduced Growth Factor Basement Membrane Matrix Type 2 (BME 2) **Trevigen Catalog #**3533-010-02

X Eppendorf tube- 5ml Eppendorf Catalog #0030122321

X Y-27632 dihydrochloride (made to 10mM stock concentration) Sigma Aldrich Catalog #Y0503

### Equipment

- Sterile cell culture hood
- Centrifuge
- P1000, P200, P20 pipettes and tips
- 37<sup>o</sup>C waterbath
- 37<sup>o</sup>C humidified incubator (5% CO2)


## Safety warnings

Y-27632 is harmful if swallowed, inhaled or splashed on skin. Ensure correct use of PPE e.g. gloves, lab coat, safety glasses.

## Before start

- Thaw an aliquot of Basement Membrane Extract type 2 (BME2) on ice, overnight at 📲 4 °C .
- Ensure 6 well plates have been stored overnight in **§** 37 °C incubator.
- Pre-warm 4ml of tissue specific organoid media in a 5ml eppendorf tube to 37 °C (media can be placed

in a 🖁 37 °C waterbath for 10 minutes).

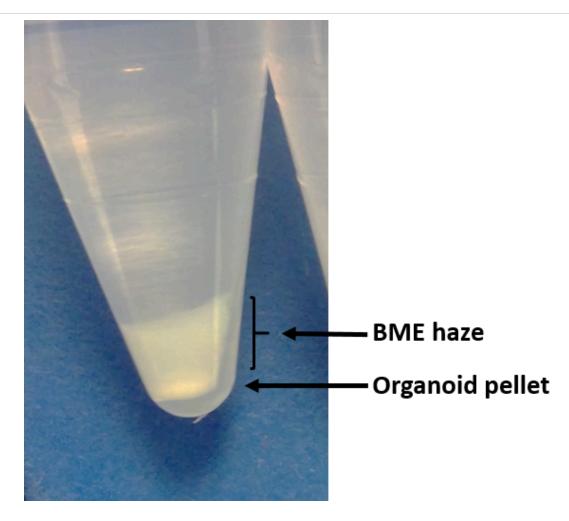


### Protocol

- 2 Remove cryovial from liquid nitrogen storage and place on dry-ice for transfer to cell culture lab.
- 3 Thaw the cryovial in a 👫 37 °C waterbath until only a small ice crystal remains.
- 4 Add 500µl of the warmed organoid media, dropwise, to the vial and then transfer everything gently into the 5ml eppendorf tube containing the remainder of the warm

organoid media.

5 Centrifuge at  $\bigcirc 800 \times g$  for 2 minutes (with the brake set on 4).


#### Safety information

Centrifuge buckets must be sealed using safety caps, which must only be opened in a microbiological safety cabinet.

6 Aspirate the supernatant to leave the organoid cell pellet.

#### Note

Sometimes after centrifugation, a BME2 'haze' will remain above the pellet. If this has happened, or if the culture has not pelleted fully or correctly, aspirate as much of the supernatant as possible and top up with ice cold PBS. Centriuge the culture again at 800xg for 2 minutes (brake set to 4).



BME2 layer above organoid pellet after centrifugation.

7 Resuspend the organoid pellet in 200µl of 100% BME2, being careful not to introduce bubbles (200µl is the recommended volume of 100% BME2 for thawing a single cryovial).

#### Note

It is important that 100% BME2 is used here. When plating out whole organoids, 100% BME2 helps to prevent the organoids sinking and attaching to the surface of the plate (whereas 80% BME2 is used when plating dissociated cells in further culture).

#### Note

BME2 must be dispensed as quickly as possible as it will begin to set as it reaches room temperature. The stock must be returned to ice as soon as possible.

A cool block can be used to help keep the temperature down while plating.

8 Using a P200 pipette, dispense 200µl organoid/BME2 suspension as small 10-15µl droplets onto 1 well of a warmed 6 well plate.

Place the plate upside down in a 37 °C incubator for 15-30 minutes to allow BME2 to set.

Note

Inverting the plate ensures that the large organoids are well dispersed through the BME2 blob as it sets, rather than sinking to the bottom.

| ▶ 0:00 / 1:25 | :: | • |
|---------------|----|---|
|               |    |   |

9 While waiting for BME2 to set,

Thaw an aliquot of 10mM Y-27632 (ROCK inhibitor). Prepare an aliquot of organoid media for the appropriate number of wells (2ml per well). Add Y-27632 to the media (1µl Y-27632 per 1ml media to achieve a final concentration of 10µM).

### Safety information

Y-27632 is harmful if swallowed, inhaled or splashed on skin.

10 After the incubation period, remove the plate from the incubator and add 2ml organoid media containing Y-27632 to each well.

Return plate to a  $37 \circ C$  , 5% CO<sub>2</sub> incubator, right side up.