Targeted proteomic LC-MS/MS analysis

Yan Chen¹, Jennifer Gin¹, Christopher Petzold¹
¹Lawrence Berkeley National Laboratory

ABSTRACT
This protocol details steps in targeted proteomic data acquisition with a standard-flow UHPLC-QQQ system. It was adapted from Chen, Y. et al. “A rapid methods development workflow for high-throughput quantitative proteomic applications.” PloS ONE 14,2 e0211582. 14 Feb. 2019, doi:10.1371/journal.pone.0211582.

EXTERNAL LINK
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0211582

DOI
dx.doi.org/10.17504/protocols.io.bf9xjr7n

EXTERNAL LINK
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0211582

PROTOCOL CITATION
Yan Chen, Jennifer Gin, Christopher Petzold 2020. Targeted proteomic LC-MS/MS analysis. protocols.io
https://dx.doi.org/10.17504/protocols.io.bf9xjr7n

KEYWORDS
LC-MS, Targeted proteomics, MRM

LICENSE
This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

CREATED
May 11, 2020

LAST MODIFIED
Jun 08, 2020

PROTOCOL INTEGER ID
36887
MATERIALS

Acetonitrile LCMS quality JT Baker Catalog #9829-02

Pierce™ Formic Acid Thermo Fisher Catalog #TS-28905

LCMS grade water VWR International Catalog #BJLC365-2.5

Isopropanol VWR International Catalog #BJ650447-4L

STEP MATERIALS

- **2.7 µm**
- **2.1 mm** internal diameter.

Analytical column: Ascentis Express Peptide C18 column (2.7 µm particle size, 160-Å pore size, 5-cm length × 2.1 mm ID). Guard column: Ascentis guard column (5-mm × 2.1 mm ID with 2.7 µm particle size, 160-Å pore size)

LC-MS system: Agilent 6460 QQQ mass spectrometer system coupled with an Agilent 1290 Infinity II UHPLC system (Agilent Technologies, Santa Clara, CA)

SAFETY WARNINGS

Wear proper PPE (gloves, safety goggle, and lab coat), and prepare solvents in a chemical hood.

Store organic solvents in a flammable storage cabinet.

BEFORE STARTING

Prepare the following solvents:

Needle wash solvents: Add 100 mL isopropanol into 900 mL water.

Solvent A: Add 0.1 % volume formic acid into LC-MS grade water.

Solvent B: Add 0.1 % volume formic acid into LC-MS grade acetonitrile

Proteomics: HPLC and Mass Spectrometry

1. Thaw peptide samples **on ice**, and transfer 30 µl of each sample to LC autosampler vials (Agilent, Cat.# 5182-0567, 5182-0564) or 96-well plate (Bio-Rad, Cat.# HSP9655).

2. Liquid chromatography tandem-mass spectrometry (LC-MS/MS) analysis is performed with an Agilent 6460 QQQ mass spectrometer system coupled to an Agilent 1290 Infinity II UHPLC system (Agilent Technologies, Santa Clara, CA).

6460QQQ

Triple quadrupole mass spectrometer

Agilent Technologies 6460QQQ

Citation: Yan Chen, Jennifer Gin, Christopher Petzold (06/08/2020). Targeted proteomic LC-MS/MS analysis. https://dx.doi.org/10.17504/protocols.io.bf9xjr7n

This is an open access protocol distributed under the terms of the [Creative Commons Attribution License](https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Samples were loaded on the temperature controlled autosampler at 4 °C. The Agilent 1290 Infinity II UHPLC is equipped with a Sigma–Aldrich Ascentis Peptides ES-C18 analytical column (2.1 mm ID, 50 mm length, 2.7 µm particle size, and 160-Å pore size (Sigma-Aldrich, Cat.# 53301-U)) coupled to a 2.1 mm ID, 5 mm length guard column (Sigma-Aldrich, Cat.# 53536-U) with the same particle and pore size. The column is operated at 60 °C.

Twenty micrograms of peptides are loaded onto the column from each sample and separated using a linear mobile-phase gradient consisting of 0.1% formic acid in water (Solvent A) and 0.1% formic acid in acetonitrile (Solvent B) operating at a flow rate of 0.4 ml/min. A 10 minutes gradient of chromatographic separation is as follows:

<table>
<thead>
<tr>
<th>Step</th>
<th>%A</th>
<th>%B</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>98</td>
<td>2</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>98</td>
<td>2</td>
<td>0.50</td>
</tr>
<tr>
<td>3</td>
<td>65</td>
<td>35</td>
<td>5.50</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>80</td>
<td>6.25</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>80</td>
<td>8.00</td>
</tr>
<tr>
<td>6</td>
<td>98</td>
<td>2</td>
<td>8.50</td>
</tr>
<tr>
<td>7</td>
<td>98</td>
<td>2</td>
<td>10.00</td>
</tr>
</tbody>
</table>

Chromatographic gradient table

Citation: Yan Chen, Jennifer Gin, Christopher Petzold (06/08/2020). Targeted proteomic LC-MS/MS analysis. https://dx.doi.org/10.17504/protocols.io.bf9xjr7n

This is an open access protocol distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
5 The eluted peptides were ionized via an Agilent Jet Stream ESI source operating in positive ion mode with the following source parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas temperature</td>
<td>250 °C</td>
</tr>
<tr>
<td>Gas flow</td>
<td>13 liters/min</td>
</tr>
<tr>
<td>Nebulizer pressure</td>
<td>35 psi</td>
</tr>
<tr>
<td>Sheath gas temperature</td>
<td>250 °C</td>
</tr>
<tr>
<td>Sheath gas flow</td>
<td>11 liters/min</td>
</tr>
<tr>
<td>Capillary voltage</td>
<td>3500 V</td>
</tr>
<tr>
<td>Nozzle voltage</td>
<td>0 V</td>
</tr>
</tbody>
</table>

6 SRM transitions were monitored through either scanning or scheduled MRM mode with the following criteria:

- Minimum dwell time of a transition is 2 ms
- Maximum number of concurrent transitions are 200
- Total cycle time less than 1.5 sec.

7 The MS raw data were acquired using Agilent MassHunter version B.08.02

8 Acquired SRM data were imported and analyzed by Skyline software version 20.1 (MacCoss Lab Software).

9 For a small sample set, peak integration is visually checked and validated by browsing replicate peak area and retention time tabs. For a large set of more than 100 samples, peak integration is completed by using skyline advanced peak picking models (e.g., mProphet).

A peptide quantitative report was exported to a .csv file for further analysis and sharing. The skyline file with the data and SRM methods information was uploaded to a project folder on the PanoramaWeb server. The project information (data and SRM methods) is made public when a manuscript is accepted for journal publication.

UHPLC-QQQ performance monitoring and QC

11 The mass spectrometer is subjected to a full autotune at least quarterly (and more frequently, if necessary) to optimize ion transmission and update EM voltage.

12 Agilent 6460 QQQ mass spectrometer is subjected to a check tune prior to analyzing a batch of samples for resolution and mass accuracy verification.

13 The UHPLC-QQQ performance is tracked **daily** by injecting 50 fmol BSA tryptic digest standard and monitoring eight BSA peptides using a scheduled MRM assay. Peptide retention time, peak shape, and peak intensity of these peptides are monitored to determine if maintenance is required.

14 The performance tracking is automated and monitored via PanoramaWeb server through an established AutoQC pipeline.
An example of autoQC instrument performance track on the peak area of eight BSA tryptic peptide measurements

AutoQC loader
by University of Washington

https://doi.org/10.1021/acs.jproteome.6b00744

Citation: Yan Chen, Jennifer Gin, Christopher Petzold (06/08/2020). Targeted proteomic LC-MS/MS analysis. https://dx.doi.org/10.17504/protocols.io.bf9xjr7n
This is an open access protocol distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.