Synthesis of fluorinated neonicotinoids

PLOS One

In 1 collection

Andrii Kyrylchuk, Andriy Bezdudnyy, Denys Klukovskyi

1Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmans'ka str. 5, Kyiv, 02660, Ukraine

[Works for me](dx.doi.org/10.17504/protocols.io.9h5h386)

Chemistry Method Development Community

ABSTRACT

This is a general protocol for synthesis of fluorinated neonicotinoid analogues by interaction of amines with 2-chloro-5-(chloromethyl)pyridine.

EXTERNAL LINK

https://doi.org/10.1371/journal.pone.0227811

THIS PROTOCOL ACCOMPANIES THE FOLLOWING PUBLICATION

DOI

dx.doi.org/10.17504/protocols.io.9h5h386

EXTERNAL LINK

https://doi.org/10.1371/journal.pone.0227811

PROTOCOL CITATION

https://dx.doi.org/10.17504/protocols.io.9h5h386

MANUSCRIPT CITATION

please remember to cite the following publication along with this protocol

COLLECTIONS

2020 Featured Protocols

KEYWORDS

neonicotinoids; vector control; fluorinated compounds; Malaria; larvicide; molecular modeling; molecular docking

Citation: Andrii Kyrylchuk, Andriy Bezdudnyy, Denys Klukovskyi (02/06/2020). Synthesis of fluorinated neonicotinoids. https://dx.doi.org/10.17504/protocols.io.9h5h386

This is an open access protocol distributed under the terms of the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2-chloro-5-(chloromethyl)pyridine

Contributed by users
Catalog #516910

Substituted aniline, obtained according to literature sources.

1. Dissolve 2.0 mmol of corresponding substituted aniline in 5 mL of anhydrous acetonitrile in round-bottom flask, add 0.324 g (1.9 mmol) of 2-chloro-5-(chloromethyl)pyridine and 0.828 g (6.0 mmol) of anhydrous potassium carbonate.

2. Put a water-cooled backflow condenser on top of the flask and heat the flask under vigorous stirring until the solution starts to boil.
3 Continue refluxing for several hours. Monitor reaction progress via thin layer chromatography (TLC).

4 After the reaction is complete, filter off inorganic salts and rigorously wash the sediment with dichloromethane.

5 Combine all liquid fraction and remove the solvents by evaporation under reduced pressure.

6 Purify the residue by preparative (TLC) on SiO₂ (eluent EtOAc/hexane 1:2).