The difficulties in handling RNA are often overemphasized. In our hands, most of the cumbersome procedures recommended for avoiding RNase contamination seem to be dispensable. We use tubes and water specifically designated for RNA work, but take few other precautions. Solutions for gels and blotting are made with milliQ water in normal lab bottles with standard chemicals weighed in disposable weighing boats. We do not DEPC treat water or solutions, or use RNase decontaminating sprays or wipes routinely. It is good to have RNase ZAP in the laboratory to clean occasional contaminations or to wipe for example tissue grinding tools that will be in direct contact with the sample. For the final resuspension of RNA samples, we use commercially available nuclease free water. On first use, electrophoresis tanks can be rendered RNase-free by treating with 3% H2O2for 10 min, then rinsed with milliQ water, then set aside for RNA work if required. Blotting and hybridization can be carried out in normal laboratory trays and glassware. We use certified RNase-free filter tips and set aside a specific set of pipettes for handling stocks of RNase and RNase-containing solutions like plasmid miniprep resuspension buffer. Our bodies are a good source of RNase contamination, so care should be taken to avoid touching the inside of the lids when handling tubes. After assembling reagents, solutions and equipment for northern blotting, it is advisable to run a test gel using RNA of known quality before handling precious samples; ribosomal RNA bands should be clearly resolved and the higher molecular weight band (28S in mammals, 25S in yeast) should be brighter than the lower band (18S). This will confirm that the reagents are sufficiently RNase free.
Conversely, nonenzymatic mechanisms of RNA degradation need to be considered: RNA hydrolysis is catalyzed by alkaline pH and/or divalent cations, particularly with increasing temperature. Therefore, store RNA in water as opposed to TE (pH 8) or similar and beware of reaction conditions involving divalent cations and heat. DNase treatment can be a problem as all DNase I buffers contain magnesium, and DNase treatment is rarely necessary for northern blots as high molecular weight genomic DNA usually resolves far from the bands of interest.