Mar 23, 2020 Version 3

STRIPE-seq library construction V.3

DOI

dx.doi.org/10.17504/protocols.io.bdtri6m6

Robert Policastro¹, Gabe Zentner¹

¹Indiana University

Gabe Zentner Indiana University

DOI: dx.doi.org/10.17504/protocols.io.bdtri6m6

Protocol Citation: Robert Policastro, Gabe Zentner 2020. STRIPE-seq library construction. **protocols.io** <u>https://dx.doi.org/10.17504/protocols.io.bdtri6m6</u>

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: March 17, 2020

Last Modified: March 23, 2020

Protocol Integer ID: 34385

Keywords: TSS, transcription, transcription start site

Abstract

Accurate mapping of transcription start sites (TSSs) is key for understanding transcriptional regulation; however, current protocols for genome-wide TSS profiling are laborious and expensive. We present Survey of TRanscription Initiation at Promoter Elements with high-throughput sequencing (STRIPE-seq), a simple, rapid, and cost-effective protocol for sequencing capped RNA 5' ends from as little as 50 ng total RNA. Including depletion of uncapped RNA and bead cleanups, a STRIPE-seq library can be constructed in approximately 5 hours.

Materials

MATERIALS

- X Terminator 5-Phosphate-Dependent Exonuclease Lucigen Catalog #TER51020
- 🔀 RNAClean XP Beckman Coulter Catalog #A63987
- 8 5M Betain Thermo Fisher Scientific Catalog #AAJ77507UCR
- X KAPA HiFi HotStart ReadyMix Roche Catalog #KK2601
- Sorbitol Dot Scientific Catalog #DSS23080-500
- X Trehalose MP Biomedicals Catalog #0210309705
- \bigotimes dNTPs 10 μ M each VWR International (Avantor) Catalog #97063-232
- SuperScript II Reverse Transcriptase Thermo Fisher Scientific Catalog #18064014
- X RNA ScreenTape Agilent Technologies Catalog #5067-5576
- X High Sensitivity D5000 ScreenTape Agilent Technologies Catalog #5067-5592

Before start

Prepare 3.3 M sorbitol/0.66 M trehalose solution as per Batut and Gingeras (PMID 24510412).

- 1. Add 🗳 2 mL RNase-free H2O to a 50 mL tube.
- 2. Add 4 8.02 g trehalose to the tube.
- 3. Add 🛛 3 mL RNase-free H2O .
- 4. Add 👗 17.8 g sorbitol to the tube.
- 5. Add 🛛 5.5 mL RNase-free H2O
- 6. Bring volume to 30 mL with 🛛 0 mL RNase-free H20
- 7. Transfer to an RNase-free glass bottle and autoclave at 121°C for 30 min.

Store 🗸 1.5 mL aliquots at 🖁 Room temperature protected from light.

Prepare Total RNA				
1	Check RNA quality and concentration on an Agilent TapeStation using a High-SRNA ScreenTape.	Sensitivity		
	Expected result			
	You should have at least 50 to 200 ng of total RNA at a concentration of at least 3 ng/µl. Your total RNA should also not be highly degraded, as measured by the quatthe rRNA peaks.	30 to 125 ality of		
	Equipment			
	TapeStation	NAME		
	Agilent	BRAND		
	G2991AA	SKU		
	https://www.agilent.com/en/product/tapestation-automated- electrophoresis/tapestation-instruments/4200-tapestation-system-228263	LINK		

Terminator Exonuclease (TEX) Digestion of Uncapped RNA

2 **Prepare TEX Reaction.** TEX preferentially degrades uncapped RNA, thus reducing the amount of rRNA and degraded mRNA fragments in the sample.

Note

TEX is magnesium-dependent, so ensure that the RNA storage buffer does not contain EDTA.

- 2.1 Create TEX master mix. Prepare a sufficient volume for the number of reactions to be performed + 1 to account for volume loss during pipetting.
 - 1. 👗 0.2 µL Terminator Exonuclease .
 - 2. 🗸 0.2 µL Terminator Exonuclease Reaction Buffer A .

Vortex to mix and spin down.

- 2.2 Prepare TEX reactions in 0.2 mL PCR tubes.
 - 1. Δ 0.4 µL TEX Master Mix
 - 2. Up to 👗 1.6 µL Total RNA 🛛
 - 3. Nuclease free water to $\angle 2 \mu L$ total reaction volume.

Vortex to mix and spin down.

- 3 Incubate the TEX reactions in thermal cycler.
 - 1. 🖁 30 °C for 🚫 01:00:00 .
 - 2. 🖁 4 °C Hold .

Note

This is a good time to prepare the Reverse Transcription Oligo (RTO) annealing and Template Switching Reverse Transcription (TSRT) reaction mixtures from steps 4.1 and 5.1.

Template Switching Reverse Transcription

- 4 **Anneal reverse transcription oligo (RTO) to RNA.** STRIPE-seq primes reverse transcription via a random pentamer adjacent to the full length TrueSeq R2 adapter (including the barcode) in the RTO.
- 4.1 Prepare one RTO annealing mix per sample in 0.2 mL PCR tubes.
 - 1. \blacksquare 1.5 µL Sorbitol/Trehalose Solution .
 - 2. $_$ 1 µL Reverse Transcription Oligo (RTO) [M] 10 micromolar (µM) . Each sample should have its own unique barcode.
 - 3. 👗 0.5 μL dNTPs [M] 10 Millimolar (mM) Each 🛛

Vortex to mix and spin down.

5m

3m

1h

- 4.2 Add $_$ 2 µL TEX Reaction (from step 3) to $_$ 3 µL RTO Annealing Mixture (from step 4.1). Vortex to mix and spin down.
- 4.3 Incubate RTO annealing mixture in thermal cycler.
 - 1. 🖁 65 °C 🚫 00:05:00 .
 - 2. 🖁 4 °C 🚫 00:02:00 .
 - 3. 📱 4 °C Hold .
- 5 **Prepare template switching reverse transcription (TSRT) reactions.** The process of TSRT enriches for the 5' ends of capped RNA in the final library.
- 5.1 Prepare TSRT reaction master mix (per sample).
 - 1. 4 2 μL Betaine M 5 Molarity (M).
 - 2. 🛓 2 μL 5X SuperScript II First Strand Buffer
 - 3. Δ 0.5 μL DTT [M] 0.1 Molarity (M) .
 - 4. 🛓 0.5 μL SuperScript II Reverse Transcriptase 🕠

Vortex to mix and spin down.

Note

Add reverse transcriptase to master mix just prior to adding to samples.

5.2 Add J 5 μL TSRT Master Mix (from step 5.1) into the

 45μ L RTO Annealing Reaction from step 4.3. Vortex to mix and spin down.

6 **TSRT**.

6.1 First half of TSRT reaction.

- 1. 🔮 25 °C 🚫 00:10:00 .
- 2. ▮ 42 °C 🜔 00:05:00 .

5m

3m

7m

	Note	
	Move on to step 6.2 immediately after the end of step 6.1.	
6.2	Add TSO. Keep the samples in the thermal cycler while adding the TSO.	3m
	1. \angle 0.25 µL TSO [M] 400 micromolar (µM) . 2. Quickly vortex to mix, spin down, and immediately place tubes back in thermal cycler.	
	Note	
	Move on to step 6.3 immediately after end of step 6.2.	
6.3	Second half of TSRT reaction.	30m
	1. ₺ 00:25:00	
	2. ♂ 00:10:00 \$ 70 °C .	
	3. 4 °C Hold	
	Note	
	This is a good time to prepare the library PCR master mix in step 8.1.	
7	Cleanup of TSRT product.	20m
	1. Transfer the TSRT product from step 6.3 into 0.5 mL tube.	
	2. Pipette A 8 µL RNAClean XP Beads up and down 10 times into	
	\triangleq 10 µL TSRT Reaction from step 6.3.	
	3. Incubate for 🚫 00:05:00 at 🖁 Room temperature	
	4. Place tubes on magnetic rack and incubate for 👏 00:05:00 at	
	Room temperature .	
	5. Carefully aspirate supernatant, leaving ~ $\boxed{2}$ 2 μ L in tube to avoid sucking up beads.	
	6. While tube is still on rack, wash beads with \blacksquare 175 μ L 70% Ethanol , and immediatly	
	discard wash without incubation.	
	7. Air dry beads for 👏 00:05:00 at 🖁 Room temperature .	

	8. Resuspend beads in $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
	for 🕥 00:01:00 at 🖁 Room temperature .	
	9. Transfer 🚨 11 µL Supernatant into new 0.2 mL PCR tubes.	
Libr	ary PCR	
8	Prepare library PCR reaction.	
8.1	Create library PCR master mix (per sample)	F ire
	1. \blacksquare 12.5 µL 2X KAPA HiFi HotStart ReadyMix	om
	2. 🗸 0.75 μL Forward Library Oligo (FLO) [Μ] 10 micromolar (μΜ)	
	3. 🗸 0.75 μL Reverse Library Oligo (RLO) [Μ] 10 micromolar (μΜ)	
	Vortex to mix and spin down.	
8.2	Add 📕 14 µL Library PCR Master Mix (from step 8.1) into	2m
	\blacksquare 11 µL Cleaned TSRT Product (from step 7). Vortex to mix and spin down.	
0	Dun library DCD reaction	
3		45m
	Initial Denaturation:	
	■ 95 °C OO:03:00	
	16-20 cycles:	
	■ 98 °C (*) 00:00:20	
	■ 6 3 °C () 00:00:15	
	■ 『 72 °C ③ 00:00:45	
	Final Extension:	
	■ 3 72 °C (>) 00:02:00	
	4 °C Hold	
10	Size selection of final library. SPRI bead size selection is used to remove fragments that	
	are outside the ideal size for Illumina sequencing.	
10.1	Removal of small fragments.	20m
	1. Transfer library PCR product from step 9 into 0.5 mL tube.	2011

2. Pipette 📕 16.3 µL RNAClean XP Beads up and down 10 times into

 \triangleq 25 µL Library PCR Product from step 9.

- 3. Incubate for 🚫 00:05:00 at 📱 Room temperature .
- 4. Place tubes on magnetic rack and incubate for 🚫 00:05:00 at

Room temperature

- 5. Carefully aspirate supernatant, leaving ~ Δ 2 μ L in tube to avoid sucking up beads.
- 6. While tube is still on rack, wash beads with \angle 175 μ L 70% Ethanol and immediately discard wash without incubation.
- 7. Air dry beads for 🚫 00:05:00 at 🖁 Room temperature .
- 8. Resuspend beads in Δ 17 μL Nuclease Free Water and incubate on magnetic rack for 👀 00:01:00 at 🖁 Room temperature .

9. Transfer \blacksquare 15 µL Supernatant to new 0.5 mL tube.

10. **Optional**: Reserve \blacksquare 1 µL Remaining Supernatant from beads if you would like to see library size distribution after removing small fragments.

10.2 Removal of large fragments.

1. Pipette 📕 8.3 µL RNAClean XP Beads up and down 10 times into

 $\stackrel{I}{=}$ 15 µL Cleaned Product from step 10.1. Make sure to vortex the beads again prior to use.

2. Incubate for 🚫 00:10:00 at 🖁 Room temperature .

3. Place tubes on magnetic rack and incubate for 🚫 00:10:00 at

Room temperature .

- 4. Transfer Δ 22 µL Supernatant to new tube.
- 5. Pipette 🛛 22 µL RNAClean XP Beads up and down 10 times into

 \triangleq 22 µL Supernatant from previous step.

6. Incubate for 🚫 00:05:00 at 🖁 Room temperature .

7. Place tubes on magnetic rack and incubate for 🚫 00:05:00 at

Room temperature .

- 8. Carefully aspirate supernatant, leaving ~ $\angle 2 \mu L$ in tube to avoid sucking up beads.
- 9. While tube is still on rack, wash beads with $\boxed{-175 \ \mu L \ 70\% \ Ethanol}$, and immediately discard wash without incubation.
- 10. Air dry beads for 🚫 00:05:00 at 🖁 Room temperature .

11. Resuspend beads in \square 16 μ L Nuclease Free Water , and incubate on magnetic rack

for 🚫 00:01:00 at 🖁 Room temperature .

12. Transfer 4 15 μ L Supernatant to new tube.

Library Quality Control

11 Run final libraries on the Agilent TapeStation using a High Sensitivity D5000 ScreenTape.

Expected result

Final libraries should be distributed between 250 to 750 bp with a total library amount of 25 to 100 ng.