Jan 14, 2020 Version 1

STRIPE-seq library construction V.1

DOI

dx.doi.org/10.17504/protocols.io.2ivgce6

Robert Policastro¹, Gabe Zentner¹

¹Indiana University

Gabe Zentner Indiana University

DOI: dx.doi.org/10.17504/protocols.io.2ivgce6

Protocol Citation: Robert Policastro, Gabe Zentner 2020. STRIPE-seq library construction. protocols.io <u>https://dx.doi.org/10.17504/protocols.io.2ivgce6</u>

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working This protocol has been used for the construction of yeast and human STRIPE-seq libraries in our lab.

Created: May 02, 2019

Last Modified: January 14, 2020

Protocol Integer ID: 22837

Keywords: TSS, transcription, transcription start site

Abstract

Accurate mapping of transcription start sites (TSSs) is key for understanding transcriptional regulation; however, current protocols for genome-wide TSS profiling are laborious and expensive. We present Survey of TRanscription Initiation at Promoter Elements with high-throughput sequencing (STRIPE-seq), a simple, rapid, and cost-effective protocol for sequencing capped RNA 5' ends from as little as 50 ng total RNA. Including depletion of uncapped RNA and bead cleanups, a STRIPE-seq library can be constructed in approximately 4 hours.

Materials

MATERIALS

- X Terminator 5-Phosphate-Dependent Exonuclease Lucigen Catalog #TER51020
- 🔀 RNAClean XP Beckman Coulter Catalog #A63987
- SM Betain Thermo Fisher Scientific Catalog #AAJ77507UCR
- 🔀 KAPA HiFi HotStart ReadyMix Roche Catalog #KK2601
- Sorbitol Dot Scientific Catalog #DSS23080-500
- X Trehalose MP Biomedicals Catalog #0210309705
- \bigotimes dNTPs 10 μM each VWR International (Avantor) Catalog #97063-232
- SuperScript II Reverse Transcriptase Thermo Fisher Scientific Catalog #18064014
- X RNA ScreenTape Agilent Technologies Catalog #5067-5576
- X High Sensitivity D5000 ScreenTape Agilent Technologies Catalog #5067-5592

Check RNA quality and concentration on an Agilent TapeStation using an RNA ScreenTape.				
Expected result				
You should have at least 50 to 200 ng of total RNA at a concentration of at least 30 to 125 ng/µl. Your total RNA should also not be highly degraded, as measured by the quality of the rRNA peaks.				
Equipment				
Equipment				
TapeStation	NAME			
Agilent	BRAND			
G2991AA	SKU			
https://www.agilent.com/en/product/tapestation-automated- electrophoresis/tapestation-instruments/4200-tapestation-system-228263	LINK			

Terminator Exonuclease (TEX) Digestion of Uncapped RNA

- 2 **Prepare TEX Reaction.** TEX preferentially degrades uncapped RNA, thus reducing the amount of rRNA and degraded mRNA fragments in the sample.
- 2.1 Create TEX master mix (per sample).
 - 1. $\underline{\bot}$ 0.2 μL Terminator Exonuclease .
 - 2. \blacksquare 0.2 µL Terminator Exonuclease Reaction Buffer A .

3m

Vortex and spin down to mix. 2.2 Prepare TEX reactions in 0.2 mL PCR tubes. 1. 👗 0.3 µL TEX Master Mix 🕠 2. Up to 👗 1.6 µL Total RNA 🕠 3. Nuclease free water to $\angle 2 \mu L$ total reaction volume. Vortex and spin down to mix. 3 Incubate the TEX reactions in thermal cycler. 1. 30 °C for 🕥 01:00:00 . 2. 🖁 4 °C Hold . Note This is a good time to prepare the Reverse Transcription Oligo (RTO) annealing and Template Switching Reverse Transcription (TSRT) reaction mixtures from steps 4.1 and 5.1.

Template Switching Reverse Transcription

4 Anneal reverse transcription oligo (RTO) to RNA. STRIPE-seq primes RT using a random pentamer with the full length TrueSeq R2 adapter (including the barcode) attached to it.

4.1 Prepare one RTO annealing mix per sample.

- 1. $\boxed{4}$ 1.5 µL Sorbitol/Trehalose Solution .
- 2. 👗 1 µL Reverse Transcription Oligo (RTO) [M] 10 micromolar (µM) . Each sample should have its own unique barcode.

5m

1h

3. Δ 0.5 μL dNTPs [M] 10 micromolar (μM) Each .

Vortex and spin down to mix.

- 4.2 Add $\underline{\square} 2 \mu L$ TEX Reaction (from step 3) to $\underline{\square} 3 \mu L$ RTO Annealing Mixture (from step 3m 4.1) in 0.2 mL PCR tube. Vortex and spin down to mix.
- 4.3 Incubate RTO annealing mixture in thermal cycler.
 - 1. 🖁 65 °C 🚫 00:05:00 .
 - 2. 4 °C 🚫 00:02:00 .
 - 3. 🖁 4 °C Hold .
- 5 **Prepare template switching reverse transcription (TSRT) reactions.** The process of template switching reverse transcription enriches for the 5' end of capped RNA in the final library.
- 5.1 Prepare TSRT reaction master mix (per sample).
 - 1. \blacksquare 2 µL Betaine [M] 5 Molarity (M) .
 - 2. 🛓 2 µL 5X SuperScript II First Strand Buffer
 - 3. 👗 0.5 μL DTT [M] 0.1 Molarity (M) .
 - 4. 👗 0.5 μL SuperScript II Reverse Transcriptase 🕠

Vortex and spin down to mix.

Note

Add reverse transcriptase to master mix just prior to aliquoting to samples.

- 5.2 д
 - Add $\boxed{4}$ 5 μ L TSRT Master Mix (from step 5.1) into the

 45μ L TSO Annealing Reaction from step 4.3. Vortex and spin down to mix.

- 6 **TSRT**.
- 6.1 First half of TSRT reaction.
 - 1. 🖁 25 °C 🚫 00:10:00 .
 - 2. 🖇 42 °C 🚫 00:05:00 .

3m

5m

	Note					
	Move on to step 6.2 immediately after the end of step 6.1.					
6.2	 Adding TSO. Keep the samples in the thermal cycler while adding the TSO. 1. Δ 0.25 μL TSO [M] 400 micromolar (μM). 2. Quickly vortex and spin down tubes to mix, and immediately place tubes back in thermal cycler. 					
	Note					
	Move on to step 6.3 immediately after end of step 6.2.					
6.3	Second half of TSRT reaction.	30m				
	1. (☉) 00:25:00 ▲ 42 °C 2. (☉) 00:10:00 ▲ 70 °C					
	3. 4 °C Hold .					
	Note					
	This is a good time to prepare the library PCR master mix in step 8.1.					
7	Cleanup of TSRT product. 1. Transfer the TSRT product from step 6.3 into 0.5 mL tubes. 2. Pipette $\boxed{4}$ 8 µL RNAClean XP Beads up and down 10 times into					
	\triangleq 10 µL TSRT Reaction from step 6.3.					
	3. Incubate for 🚫 00:05:00 at 🖁 Room temperature .					
	4. Place tubes on magnetic rack and incubate for 👀 00:05:00 at					
	Room temperature .					
	5. Discard supernatant. Leave ~ $\boxed{\square}$ 1 μ L in tube to avoid sucking up beads.					
	6. While tube is still on rack, wash beads with \blacksquare 175 μ L 70% Ethanol , and immediatly					
	discard wash without incubation.					
	7. Air dry beads for 👏 00:05:00 at 🖁 Room temperature .					

	for 👏 00	:01:00 at 📱 R	α μL Nuclease Free Water com temperature tant into new 0.2 mL PCR	, and incubate on magnetic rac R tube.	k		
Libra	ary PCR						
8	Prepare libra	ry PCR reactior					
8.1	 Create library PCR master mix (per sample). 1. Δ 12.5 μL 2X KAPA HiFi HotStart ReadyMix 2. Δ 0.75 μL Forward Library Oligo (FLO) [M] 10 micromolar (μM) 						
	3. \angle 0.75 µL Reverse Library Oligo (RLO) [M] 10 micromolar (µM)						
	Vortex and spin down to mix.						
8.2	Add 🕹 14 µL Library PCR Master Mix (from step 8.1) into						
	\blacksquare 11 μL Cleaned TSRT Product (from step 7). Vortex and spin down to mix.						
9	Run library PC	CR reaction.			45m		
	Initial Denaturation:						
		ation:					
	16-20 cycles:						
		00:00:20					
	■ 🖁 63 °C	00:00:15					
	■ 🖁 72 °C	00:00:45					
	Final Extension:						
	■ 3 72 °C	00:02:00					
	■ 🖁 4 °C H	old					
40							

- 10 **Size selection of final library.** SPRI bead size selection is used to remove fragments that are outside the ideal size for illumina sequencing.
- 10.1 Removal of small fragments.

- 1. Transfer library PCR product from step 9 into 0.5 mL tube.
- 2. Pipette 📕 16.3 µL RNAClean XP Beads up and down 10 times into
 - \triangleq 25 µL Library PCR Product from step 9.
- 3. Incubate for 🚫 00:05:00 at 🖁 Room temperature .
- 4. Place tubes on magnetic rack and incubate for 🚫 00:05:00 at
 - Room temperature .
- 5. Discard supernatant. Leave ~ $\angle 2 \mu L$ in tube to avoid sucking up beads.
- 6. While tube is still on rack, wash beads with Δ 175 μ L 70% Ethanol , and immediately discard wash without incubation.
- 7. Air dry beads for 🚫 00:05:00 at 📱 Room temperature .
- 8. Resuspend beads in $\[I]{}$ 17 μ L Nuclease Free Water , and incubate on magnetic rack
 - for 🚫 00:01:00 at 🖁 Room temperature .
- 9. Transfer Δ 15 µL Supernatant to new 0.5 mL tube.
- Optional: Reserve Δ 1 μL Remaining Supernatant from beads if you would like to see library size distribution after removing small fragments.

10.2 Removal of large fragments.

- 1. Pipette $\boxed{4}$ 8.3 µL RNAClean XP Beads up and down 10 times into
 - $\stackrel{I}{=}$ 15 µL Cleaned Product from step 10.1.
- 2. Incubate for 🚫 00:10:00 at 📱 Room temperature .
- 3. Place tubes on magnetic rack and incubate for 👏 00:10:00 at
 - Room temperature .
- 4. Transfer Δ 22 µL Supernatant to new tube.
- 5. Pipette 📕 22 µL RNAClean XP Beads up and down 10 times into
 - \triangleq 22 µL Supernatant from previous step.
- 6. Incubate for 🚫 00:05:00 at 🖁 Room temperature .
- 7. Place tubes on magnetic rack and incubate for 🚫 00:05:00 at
 - Room temperature
- 8. Discard supernatant. Leave ~ $\angle 2 \mu L$ in tube to avoid sucking up beads.
- 9. While tube is still on rack, wash beads with 4 175 μ L 70% Ethanol , and immediately discard wash without incubation.
- 10. Air dry beads for 🚫 00:05:00 at 🖁 Room temperature .

20m

11. Resuspend beads in \square 16 μ L Nuclease Free Water , and incubate on magnetic rack

for 🚫 00:01:00 at 🖁 Room temperature .

12. Transfer Δ 15 µL Supernatant to new tube.

Library Quality Control

11 Run final libraries on the Agilent TapeStation using a High Sensitivity D5000 ScreenTape.

Expected result

Final libraries should be dsitributed between 250 to 750 bp with a total library amount of 25 to 100 ng.