
Nov 08, 2019 Version 11

Stranded Transcript Count Table Generation from Long Reads V.11

Version 1 is forked from Transcript Coverage Analysis from Long Reads

DOI

dx.doi.org/10.17504/protocols.io.8uvhww6

David A Eccles

Malaghan Institute of Medical Research �NZ�

David A Eccles
Malaghan Institute of Medical Research �NZ�

1

1

DOI: dx.doi.org/10.17504/protocols.io.8uvhww6

Protocol Citation: David A Eccles 2019. Stranded Transcript Count Table Generation from Long Reads. protocols.io

https://dx.doi.org/10.17504/protocols.io.8uvhww6

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: In development

We are still developing and optimizing this protocol

Created: October 30, 2019

Last Modified: November 08, 2019

Protocol Integer ID: 29301

Keywords: stranded transcript count table generation from long read, stranded transcript count table generation, transcript

reference fasta file, transcript table, transcript, protocol preparing reads for stranded mapping, different samples at the

transcript level, using long read, transcript level, protocol preparing read, oriented fastq file, fastq file, long read, gene, gene

name, stranded mapping, annotation file

protocols.io | https://dx.doi.org/10.17504/protocols.io.8uvhww6 November 8, 2019 1/8

file:///view/transcript-coverage-analysis-from-long-reads-re2d3ge
https://dx.doi.org/10.17504/protocols.io.8uvhww6
https://www.protocols.io/researchers/david-eccles
https://www.protocols.io/researchers/david-eccles
https://www.protocols.io/researchers/david-eccles
https://www.protocols.io/researchers/david-eccles
https://dx.doi.org/10.17504/protocols.io.8uvhww6
https://dx.doi.org/10.17504/protocols.io.8uvhww6
https://creativecommons.org/licenses/by/4.0/
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.8uvhww6

Abstract

This protocol is for comparing different samples at the transcript level, using long reads that are mapped to

transcripts.

Input(s): demultiplexed and oriented fastq files (see protocol Preparing Reads for Stranded Mapping), transcript

reference fasta file, annotation file

Output(s): transcript table, sorted by differential coverage, annotated with gene name / description / location

Before start

Obtain a transcript fasta file, and an annotation file. For the mouse genome, I use the following files:

���Transcript sequences from Ensembl; this should be the union of cDNA, CDS, and ncRNA sequences (e.g. from

This directory).

���Annotation file obtained from Ensembl BioMart �Ensembl Genes � Mouse Genes) as a compressed TSV file

with the following attribute columns:

Transcript stable ID

Gene name

Gene description

Chromosome/scaffold name

Gene start (bp)

Gene end (bp)

Strand

A recent version of these files can be obtained from This Zenodo Repository

protocols.io | https://dx.doi.org/10.17504/protocols.io.8uvhww6 November 8, 2019 2/8

https://dx.doi.org/10.17504/protocols.io.57hg9j6
http://asia.ensembl.org/Mus_musculus/Info/Index
http://ftp//ftp.ensembl.org/pub/current_fasta/mus_musculus/
http://asia.ensembl.org/biomart/martview
https://doi.org/10.5281/zenodo.1244087
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.8uvhww6

1
Demultiplex and orient reads as per the protocol Preparing Reads for Stranded Mapping.

It is expected that these demultiplexed reads will be split up in the current directory, and

coupled with a 'barcode_counts.txt' file. If that's the case, the following should work:

Example expected output:

If the 'barcode_counts.txt' file is not present, this error will appear:

If one or more of the oriented read files is missing, it will look something like this:

for bc in $(awk '{print $2}' barcode_counts.txt);
 do ls oriented/${bc}_reads_dirAdjusted.fq.gz;
done

oriented/BC03_reads_dirAdjusted.fastq.gz
oriented/BC04_reads_dirAdjusted.fastq.gz
oriented/BC05_reads_dirAdjusted.fastq.gz
oriented/BC06_reads_dirAdjusted.fastq.gz
oriented/BC07_reads_dirAdjusted.fastq.gz
oriented/BC08_reads_dirAdjusted.fastq.gz

awk: fatal: cannot open file `barcode_counts.txt' for reading (No
such file or directory)

oriented/BC03_reads_dirAdjusted.fastq.gz
oriented/BC04_reads_dirAdjusted.fastq.gz
ls: cannot access 'oriented/BC05_reads_dirAdjusted.fastq.gz':
 No such file or directory
ls: cannot access 'oriented/BC06_reads_dirAdjusted.fastq.gz':
 No such file or directory
oriented/BC07_reads_dirAdjusted.fastq.gz
oriented/BC08_reads_dirAdjusted.fastq.gz

2 Prepare a substitution matrix for barcode mapping. The default substitution matrix is

swayed too much by INDELs in the barcode sequences, so here's one that I've

developed using a combination of trial & error and last-train:

Demultiplex Reads

Index Preparation

protocols.io | https://dx.doi.org/10.17504/protocols.io.8uvhww6 November 8, 2019 3/8

https://dx.doi.org/10.17504/protocols.io.74vhqw6
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.8uvhww6

cDNA.mat

[note: this is a different matrix from that used for demultiplexing and read orientation]

#last -Q 0
#last -a 13
#last -A 13
#last -b 4
#last -B 4
#last -S 1
score matrix (query letters = columns, reference letters =
rows):
 A C G T
A 5 -18 -7 -18
C -18 6 -18 -12
G -7 -18 5 -18
T -18 -12 -18 6

3 Prepare transcript index (see Guidelines for data sources). Following Martin Frith's

recommendation, the '-uNEAR' seeding scheme is used to slightly increase sensitivity.

This will generate seven additional files of the form <index name>.XXX�

lastdb -uNEAR Mus_musculus.GRCm38.cds.all.fa <(zcat
Mus_musculus.GRCm38.cds.all.fa.gz)

4 Reads are mapped to the transcriptome with LAST.

The results of that mapping can be piped through last-map-probs to exclude unlikely

hits, then through 'maf-convert -n tab' to convert to a one-line-per-mapping CSV format.

This CSV format is further processed to make sure that there is only one mapping per

transcript-read pair.

Transcriptome Mapping

protocols.io | https://dx.doi.org/10.17504/protocols.io.8uvhww6 November 8, 2019 4/8

https://github.com/mcfrith/last-rna/blob/master/last-long-reads.md#option-1-prepare-a-genome-without-repeat-masking
https://github.com/mcfrith/last-rna/blob/master/last-long-reads.md#option-1-prepare-a-genome-without-repeat-masking
https://github.com/mcfrith/last-rna/blob/master/last-long-reads.md#option-1-prepare-a-genome-without-repeat-masking
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.8uvhww6

mkdir -p mapped
for bc in $(awk '{print $2}' barcode_counts.txt);
 do echo "** ${bc} **";
 lastal -P 10 -p cDNA.mat Mus_musculus.GRCm38.cds.all.fa <(pv
oriented/${bc}_reads_dirAdjusted.fq.gz | zcat) | \
 last-map-probs | maf-convert -n tab | cut -f 2,7,10 | sort | \
 uniq | gzip >
mapped/trnMapping_LAST_${bc}_vs_Mmus_transcriptome.txt.gz;
done

5 The result is then aggregated to sum up counts per transcript:

Note: I've split this up into two steps (compared to previous versions of this protocol) so

that an intermediate count of the total number of mapped transcripts per barcode can be

done:

for bc in $(awk '{print $2}' barcode_counts.txt);
 do echo "** ${bc} **";
 zcat mapped/trnMapping_LAST_${bc}_vs_Mmus_transcriptome.txt.gz |
\
 awk -F'\t' -v "bc=${bc}" '{print bc,$1,$3}' | sort | uniq -c |
\
 gzip >
mapped/trnCounts_LAST_${bc}_vs_Mmus_transcriptome.txt.gz;
done

for bc in $(awk '{print $2}' barcode_counts.txt);
 do echo -n "${bc} ";
 zcat mapped/trnMapping_LAST_${bc}_vs_Mmus_transcriptome.txt.gz |
\
 awk '{print $2}' | sort | uniq | wc -l;
done

6 count_analysis.r

Transcript counts are merged with ensembl gene annotation, then converted into wide

format (one line per transcript) using an R script.

Annotation and Result generation

protocols.io | https://dx.doi.org/10.17504/protocols.io.8uvhww6 November 8, 2019 5/8

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.8uvhww6

The transcript annotation in this case is from ensembl BioMart (see Guidelines for more

details).

protocols.io | https://dx.doi.org/10.17504/protocols.io.8uvhww6 November 8, 2019 6/8

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.8uvhww6

#!/usr/bin/env Rscript
library(dplyr);
library(tidyr);

load ensemble transcript metadata (including gene name)
ensembl.df <-
as.tbl(read.delim('ensembl_mm10_geneFeatureLocations.txt.gz',
 col.names=c('transcript','Description','Start','End',
 'Strand','Gene','Chr'),
 stringsAsFactors=FALSE));
ensembl.df$Description <- sub(' \\
[.*$','',ensembl.df$Description);
ensembl.df$Description <- sub('^(.
{50}).+$','\\1...',ensembl.df$Description);
ensembl.df[,1:7] <- ensembl.df[,c(1,7,5,3,4,2,6)];
colnames(ensembl.df)[1:7] <- colnames(ensembl.df)
[c(1,7,5,3,4,2,6)];
options(scipen=15); ## don't show scientific notation for large
positions
load used barcode identifiers
bcNames <- read.table("barcode_counts.txt",
stringsAsFactors=FALSE)[,2];
load count data into 'narrow' array (one line per count)
trn.counts <- tibble(); for(bc in bcNames){
 trn.counts <-
 bind_rows(trn.counts,
 as.tbl(read.table(

sprintf('mapped/trnCounts_LAST_%s_vs_Mmus_transcriptome.txt.gz',
bc),
 col.names=c('count','barcode','transcript','dir'),
 stringsAsFactors=FALSE)));
}

remove revision number from transcript names (if present)
trn.counts$transcript <- sub('\\.[0-
9]+$','',trn.counts$transcript);
convert to wide format (one line per transcript)
trn.counts.wide <- spread(trn.counts, barcode, count) %>%
 mutate(dir = c('+'='fwd', '-'='rev')[dir]);
for(bd in colnames(trn.counts.wide[,-1])){
 trn.counts.wide[[bd]] <- replace_na(trn.counts.wide[[bd]],0);
}
merge ensembl metadata with transcript counts

protocols.io | https://dx.doi.org/10.17504/protocols.io.8uvhww6 November 8, 2019 7/8

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.8uvhww6

gene.counts.wide <- inner_join(ensembl.df, trn.counts.wide,
by='transcript');
gene.counts.wide <- gene.counts.wide[order(-
rowSums(gene.counts.wide[,-(1:8)])),];
write result out to a file
write.csv(gene.counts.wide,
file='wide_transcript_counts_LAST.csv',
 row.names=FALSE);

7 Here is a downstream workflow that carries out transcript-level differential expression

analysis using DESeq2:

Creating Differential Transcript Expression Results with DESeq2

I would like to emphasise that batch effects should be considered for nanopore

sequencing, given how frequently the technology changes. Make sure that at least the

sequencing library (i.e. samples prepared in tandem on the same day from the same kit)

is added into the statistical model, and try to make sure that sequencing libraries are

fairly heterogeneous - replicates from a sample with skewed transcript distributions

could influence the outcome of statistical tests.

Downstream Workflows

protocols.io | https://dx.doi.org/10.17504/protocols.io.8uvhww6 November 8, 2019 8/8

https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://dx.doi.org/10.17504/protocols.io.799hr96
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.8uvhww6

