
Oct 19, 2020 Version 6

Stranded Mapping from Oriented Long Reads V.6

DOI

dx.doi.org/10.17504/protocols.io.bnjrmcm6

David A Eccles

Malaghan Institute of Medical Research (NZ)

David A Eccles
Malaghan Institute of Medical Research (NZ)

1

1

DOI: dx.doi.org/10.17504/protocols.io.bnjrmcm6

External link: https://bioinformatics.stackexchange.com/a/3922/73

Protocol Citation: David A Eccles 2020. Stranded Mapping from Oriented Long Reads. protocols.io

https://dx.doi.org/10.17504/protocols.io.bnjrmcm6Version created by David A Eccles

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: October 19, 2020

Last Modified: October 19, 2020

Protocol Integer ID: 43345

protocols.io | https://dx.doi.org/10.17504/protocols.io.bnjrmcm6 October 19, 2020 1/9

https://dx.doi.org/10.17504/protocols.io.bnjrmcm6
https://www.protocols.io/researchers/david-eccles
https://www.protocols.io/researchers/david-eccles
https://www.protocols.io/researchers/david-eccles
https://www.protocols.io/researchers/david-eccles
https://dx.doi.org/10.17504/protocols.io.bnjrmcm6
https://bioinformatics.stackexchange.com/a/3922/73
https://dx.doi.org/10.17504/protocols.io.bnjrmcm6
file:///researchers/david-eccles
https://creativecommons.org/licenses/by/4.0/
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.bnjrmcm6

Abstract

This protocol demonstrates how to map strand-oriented long reads to a genome, and visualise them in a genome

browser.

The general idea is to use minimap2 to create stranded BAM files, which are split for forward/reverse orientation

then converted into BigWig format for display in a genome browser.

Input(s):

stranded fastq files (see protocol Preparing Reads for Stranded Mapping)

a FASTA file containing the genome / sequence of interest.

Output(s):

Genome-mapped stranded BAM files

Genome-mapped stranded BigWig files

Before start

You will need access to the following free and open-source software program(s):

minimap2

samtools

And the following additional data file(s):

a FASTA file containing the genome / sequence of interest.

protocols.io | https://dx.doi.org/10.17504/protocols.io.bnjrmcm6 October 19, 2020 2/9

https://dx.doi.org/10.17504/protocols.io.57hg9j6
https://github.com/lh3/minimap2#install
http://www.htslib.org/download/
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.bnjrmcm6

1 Orient reads as per protocol Preparing Reads for Stranded Mapping.

If this has been done, then the following command should produce output without errors:

Example output:

for bc in $(awk '{print $2}' barcode_counts.txt);
 do ls oriented/${bc}_reads_dirAdjusted.fq.gz;
done

oriented/BC03_reads_dirAdjusted.fq.gz
oriented/BC04_reads_dirAdjusted.fq.gz
oriented/BC05_reads_dirAdjusted.fq.gz
oriented/BC06_reads_dirAdjusted.fq.gz
oriented/BC07_reads_dirAdjusted.fq.gz
oriented/BC08_reads_dirAdjusted.fq.gz

2 Prepare genome index for spliced alignment

minimap2
NAME

Linux OS

Heng Li DEVELOPER

https://github.com/lh3/minimap2 SOURCE LINK

Software

Orient Reads

Index Preparation

protocols.io | https://dx.doi.org/10.17504/protocols.io.bnjrmcm6 October 19, 2020 3/9

https://dx.doi.org/10.17504/protocols.io.57hg9j6
https://github.com/lh3/minimap2
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.bnjrmcm6

minimap2 -d mmus_ucsc_all-splice.idx -Q -t 10 -x splice
mmus_ucsc_all.fa

3 Map the long reads to the genome using minimap2, using samtools to covert to a sorted

BAM format. This is where the reverse complementing done during demultiplexing gives

a big saving of effort. As this BAM file is one of the main outputs, the run name is added

to the file name.

SAMtools
NAME

Linux OS

Wellcome Trust Sanger Institute DEVELOPER

https://github.com/samtools/samtools SOURCE LINK

Software

runName="CHANGE_THIS";
mkdir -p mapped;
for bc in $(awk '{print $2}' barcode_counts.txt);
 do echo ${bc};
 minimap2 -t 10 -a -x splice mmus_ucsc_all-splice.idx
oriented/${bc}_reads_dirAdjusted.fq.gz | \
 samtools view -b | samtools sort >
mapped/mm2_${runName}_called_${bc}_vs_MmusG.bam;
done

Read Mapping

Creating BigWig Coverage Files

protocols.io | https://dx.doi.org/10.17504/protocols.io.bnjrmcm6 October 19, 2020 4/9

https://github.com/samtools/samtools
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.bnjrmcm6

4 mpileupDC.pl

A bedGraph of coverage is created using samtools mpileup and mpileupDC.pl, excluding

any skipped intronic sequence. When 'mpileupDC.pl' is provided with a single file, it will

output a bedGraph file with a header line starting with '##'; this header line is removed.

To simplify output naming in later steps, the run name is added to the file name.

The particular JBrowse plugin that I use for stranded display requires that the reverse

strand have negative coverage values, so that file needs to be changed:

As an alternative, BEDTools can be used to generate coverage. The default options for

BEDTools treat sequence deletions (which happen frequently in nanopore reads) as a

drop in coverage, which can make exon hunting and coverage calculation more difficult. I

have proposed a fix to this via a command-line option "-ignoreD", which is available from

my BEDTools fork:

runName="CHANGE_THIS";
for bc in $(awk '{print $2}' barcode_counts.txt);
 do echo ${bc};
 samtools view -b -F 0x10 mapped/mm2_called_${bc}_vs_MmusG.bam |
\
 samtools mpileup -A -B -Q 0 -q 0 -I -q 0 -Q 0 - | \
 mpileupDC.pl | tail -n +2 >
mapped/mm2_${runName}_called_${bc}_vs_MmusG.bg.plus
 samtools view -b -f 0x10 mapped/mm2_called_${bc}_vs_MmusG.bam |
\
 samtools mpileup -A -B -Q 0 -q 0 -I -q 0 -Q 0 - | \
 mpileupDC.pl | tail -n +2 >
mapped/mm2_${runName}_called_${bc}_vs_MmusG.bg.minus
 perl -i -pe 's/([0-9]+)$/-$1/'
mapped/mm2_${runName}_called_${bc}_vs_MmusG.bg.minus
done;

protocols.io | https://dx.doi.org/10.17504/protocols.io.bnjrmcm6 October 19, 2020 5/9

https://gitlab.com/gringer/bioinfscripts/blob/master/mpileupDC.pl
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.bnjrmcm6

With the standard version of BEDTools, the "-ignoreD" parameter can be excluded in

order to generate a similar BedGraph output, but with drops in coverage at deletion

points:

BEDTools
NAME

Linux OS

Aaron Quinlan DEVELOPER

https://github.com/gringer/bedtools2 SOURCE LINK

Software

runName="CHANGE_THIS";
for bc in $(awk '{print $2}' barcode_counts.txt);
 do echo ${bc};
 samtools view -q 1 mapped/mm2_called_${bc}_vs_MmusG.bam | \
 bedtools genomecov -bga -strand '+' -split -ignoreD -ibam - >
mapped/mm2_${runName}_called_${bc}_vs_MmusG.bg.plus
 bedtools genomecov -bga -strand '-' -split -ignoreD -ibam - >
mapped/mm2_${runName}_called_${bc}_vs_MmusG.bg.minus
 perl -i -pe 's/([0-9]+)$/-$1/'
mapped/mm2_${runName}_called_${bc}_vs_MmusG.bg.minus
done;

protocols.io | https://dx.doi.org/10.17504/protocols.io.bnjrmcm6 October 19, 2020 6/9

https://github.com/gringer/bedtools2
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.bnjrmcm6

runName="CHANGE_THIS";
for bc in $(awk '{print $2}' barcode_counts.txt);
 do echo ${bc};
 samtools view -q 1 mapped/mm2_called_${bc}_vs_MmusG.bam | \
 bedtools genomecov -bga -strand '+' -split -ibam - >
mapped/mm2_${runName}_called_${bc}_vs_MmusG.bg.plus
 bedtools genomecov -bga -strand '-' -split -ibam - >
mapped/mm2_${runName}_called_${bc}_vs_MmusG.bg.minus
 perl -i -pe 's/([0-9]+)$/-$1/'
mapped/mm2_${runName}_called_${bc}_vs_MmusG.bg.minus
done;

5 Stranded bedgraph files are converted to bigwig. This requires BEDTools and a genome

information file containing chromosome lengths (one for Mmus/mm10 is attached to this

step). As this bigwig file is one of the main outputs, the run name is added to the file

name.

Mmus_genome.chrInfo.txt

BEDTools
NAME

Quinlan laboratory, University of Utah DEVELOPER

https://github.com/arq5x/bedtools2/ SOURCE LINK

Software

for bc in $(awk '{print $2}' barcode_counts.txt);
 do echo ${bc};
 basename="mapped/mm2_${runName}_called_${bc}_vs_MmusG"
 bedGraphToBigWig ${basename}.bg.plus Mmus_genome.chrInfo.txt
${basename}.bw.plus
 bedGraphToBigWig ${basename}.bg.minus Mmus_genome.chrInfo.txt
${basename}.bw.minus
done

protocols.io | https://dx.doi.org/10.17504/protocols.io.bnjrmcm6 October 19, 2020 7/9

https://github.com/arq5x/bedtools2/
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.bnjrmcm6

6 Each track should have its own JBrowse configuration section using the StrangedBigWig

class and StrandedXYPlot type. BAM tracks can also be added. An example is shown

here:

I have written my own helper scripts to reduce the effort required to generate these track

sections. This is specific to my use case, but may help others for adapting to their own

use. It takes three command-line parameters: the base file name, the internal ID for use

in the track definition, and the label that appears within JBrowse. I use it as follows:

[tracks.bam-CG005_Nov18_BC03-track]
settings for what data is shown in the track
storeClass = JBrowse/Store/SeqFeature/BAM
urlTemplate = raw/mm2_called_CG005AB_BC03_vs_MmusG.bam
baiUrlTemplate = raw/mm2_called_CG005AB_BC03_vs_MmusG.bam.bai
chunkSizeLimit = 10000000
maxHeight = 3000
settings for how the track looks
category = MinION / Alignments
type = JBrowse/View/Track/Alignments2
key = Minimap2 alignments from 4T1.ρ0#C [CG005]

[tracks.bw-CG005_Nov18_BC03-both-track]
storeClass =
StrandedPlotPlugin/Store/SeqFeature/StrandedBigWig
urlTemplate = bw/mm2_called_CG005AB_BC03_vs_MmusG.bw
category = MinION / Coverage
type =
StrandedPlotPlugin/View/Track/Wiggle/StrandedXYPlot
key = Minimap2 coverage from 4T1.ρ0#C [CG005]
scale = log
scoreType = maxScore
autoscale = global
style.pos_color = #228B22
style.neg_color = lightskyblue

./makeMinIONTemplate.sh mm2_called_CG005AB_BC03_vs_MmusG
CG005_Nov18_BC03 '4T1.ρ0#C [CG005]' >> tracks.conf

JBrowse Configuration

protocols.io | https://dx.doi.org/10.17504/protocols.io.bnjrmcm6 October 19, 2020 8/9

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.bnjrmcm6

makeMinIONTemplate.sh

7 If this has worked properly, then mapping human or mouse to the mitochondrial genome

should show most expression appearing on the positive strand, with a small scattering of

negative-strand expression, a bit like the Expected Results shown here.

If not, check for the following issues:

Tracks not displaying at all in JBrowse -- make sure track IDs inside square brackets

are of the form [tracks.<unique-id-without-dots>-track]

JBrowse track is reflected in the X axis -- make sure that the reverse bedgraph file is

orientated the correct way; it should be created with the '-f 0x10' flag (no

capitalisation).

JBrowse track only shows one direction -- make sure that the reverse bedgraph file

has negative values, and re-generate the bigwig file

Expected result

Stranded BigWig JBrowse tracks for four samples, demonstrating log expression on
the mitochondrial chromosome.

Sanity Check

protocols.io | https://dx.doi.org/10.17504/protocols.io.bnjrmcm6 October 19, 2020 9/9

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.bnjrmcm6

