
Oct 18, 2017

Step-by-Step guide for downloading very large datasets to a
supercomputer using the SRA Toolkit

DOI

dx.doi.org/10.17504/protocols.io.kb6csre

Jacob Heldenbrand , Yingxue Ren , Yan Asmann , Liudmila S. Mainzer

National Center for Supercomputing Applications, University of Illinois at Urbana-champaign;

Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL

Katherine Kendig

1 2 2 1

1

2

DOI: dx.doi.org/10.17504/protocols.io.kb6csre

Protocol Citation: Jacob Heldenbrand, Yingxue Ren, Yan Asmann, Liudmila S. Mainzer 2017. Step-by-Step guide for

downloading very large datasets to a supercomputer using the SRA Toolkit . protocols.io

https://dx.doi.org/10.17504/protocols.io.kb6csre

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

Created: October 18, 2017

Last Modified: March 26, 2018

Protocol Integer ID: 8286

protocols.io | https://dx.doi.org/10.17504/protocols.io.kb6csre October 17, 2017 1/13

https://dx.doi.org/10.17504/protocols.io.kb6csre
https://www.protocols.io/researchers/katherine-kendig
https://www.protocols.io/researchers/katherine-kendig
https://dx.doi.org/10.17504/protocols.io.kb6csre
https://dx.doi.org/10.17504/protocols.io.kb6csre
https://creativecommons.org/licenses/by/4.0/
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.kb6csre

1 The SRA Toolkit is a complex piece of software that can be difficult to navigate, as the

documentation is extensive and error messages are not always able to provide clarity

when failures occur. In an effort to maximize the Toolkit’s utility, we have devised a

protocol for downloading thousands of SRA files and converting them into FASTQ files in

a reasonable amount of time. To make the process as simple as possible, our protocol

anticipates and adjusts for likely errors. While this guide has a limited lifespan in the face

of regular updates to the Toolkit, we hope that our instructions will be of help to the

community, as they summarize a lot of disjoint information already floating around on the

Web.

2 prefetch—For downloading the SRA files themselves from NCBI

vdb-config—Must use this to configure the toolkit and specify the location of the

dbGaP private key

sra-validate—Tool that performs a checksum on SRA to ensure transfer of data was

successful

fastq-dump—For converting the SRA files into the FASTQ format for easy use

Anisimov Launcher—Blue Waters tool that launches multiple jobs in parallel

Aspera—Download tool

Note1: This protocol assumes you are downloading dbGaP data. If not, skip the private

key configuration steps.

Note2: We designed this Guide for downloads to Blue Waters. With small adjustments, it

should be applicable to other clusters.

3 The explanations and scripts below assume the following file structure. If it is modified,

the scripts must be altered as well.

Introduction

Tools

Assumed File Structure

protocols.io | https://dx.doi.org/10.17504/protocols.io.kb6csre October 17, 2017 2/13

https://github.com/ncsa/Scheduler
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.kb6csre

4 The download procedure is normally a two-step process: first grab the SRA files from the

repository, then convert SRA files to FASTQ on the cluster. A few preparatory steps will

help avoid bottlenecks.

vdb-config
Run the following command to execute vdb-config (located within the SRA toolkit bin

folder). This may require X11 forwarding (ssh –X flag on login to cluster).

./vdb-config –i

Preparation

protocols.io | https://dx.doi.org/10.17504/protocols.io.kb6csre October 17, 2017 3/13

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.kb6csre

This opens a GUI where the location of the dbGaP project space can be configured. Set

this to Project_Space. If downloading dbGaP data, specify the repository key location.

Make sure this is done before downloading the refseq data below, as the tool will not

allow you to point to a directory in which the sra and refseq subdirectories are not empty.

refseq download
To convert an SRA file to the FASTQ format, fastq-dump must normally download

reference data stored in a refseq database at NCBI. However, this creates a bottleneck

when trying to scale up conversions of many files, as the reference data end up being

downloaded repeatedly for every file batch.

To circumvent this bottleneck, we manually downloaded all the reference files located at

https://ftp.ncbi.nlm.nih.gov/sra/refseq/. While this is a large download of ~40GB, it only

needs to be done once. Furthermore, the SRA Toolkit is configured to download any

missing reference files if it cannot find them later during the SRA to FASTQ conversion

stage. Thus, if new reference files are added to the repository between your bulk

reference download and the actual data conversion, you should still get correct results

when running fastq-dump.

To download the reference files, copy the contents of

https://ftp.ncbi.nlm.nih.gov/sra/refseq/ into an Excel sheet, grab the names of each file,

and put them in a file named /base/refseq_download/list_all_refseqs.txt.

Use the following bash script as a wrapper to call the python script that downloads the

reference files. Wrap the bash script in a qsub and submit it to a compute node. Using

ten download processes in parallel by breaking up

/base/refseq_download/list_all_refseqs.txt into 10 batches will increase efficiency.

/base/refseq_download/download_parallel_wrapper.sh #!/bin/bash
python base/refseq_download/download_refseqs_parallel.py 0 &
python base/refseq_download/download_refseqs_parallel.py 1 &
python base/refseq_download/download_refseqs_parallel.py 2 &
python base/refseq_download/download_refseqs_parallel.py 3 &
python base/refseq_download/download_refseqs_parallel.py 4 &
python base/refseq_download/download_refseqs_parallel.py 5 &
python base/refseq_download/download_refseqs_parallel.py 6 &
python base/refseq_download/download_refseqs_parallel.py 7 &
python base/refseq_download/download_refseqs_parallel.py 8 &
python base/refseq_download/download_refseqs_parallel.py 9 & wait

protocols.io | https://dx.doi.org/10.17504/protocols.io.kb6csre October 17, 2017 4/13

https://ftp.ncbi.nlm.nih.gov/sra/refseq/
https://ftp.ncbi.nlm.nih.gov/sra/refseq/
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.kb6csre

/base/refseq_download/download_refseqs_parallel.py import sys
import subprocess N = int(sys.argv[1]) filenames = [] with
open('/base/refseq_download/list_all_refseqs.txt') as F:
for line in F: name = line.strip()
filenames.append(name) # Start at position N and go to the end in
10 step intervals for i in filenames[N::10]:
subprocess.check_call("~/.aspera/connect/bin/ascp \ -i
~/.aspera/connect/etc/asperaweb_id_dsa.openssh -k 1 -T -l800m \
anonftp@ftp.ncbi.nlm.nih.gov:/sra/refseq/{0} \
/base/Project_Space/refseq/".format(i), shell=True)

5 Step 1: Create Batch List
For each batch, create a text file in /base/batches/batch_lists/. For this protocol, we will

refer to the current batch being downloaded as batchX. Therefore, create a file like the

following:

... and so on.

Note: Using this procedure we downloaded ~ 10,000 SRA files broken up into batches of

1,200 SRAs.

Step 2: Create JobList and prefetch bash scripts for the

Anisimov Launcher
This step is designed to bundle individual single-threaded download tasks into an MPI

job that can run across multiple nodes. This increases queue priority, and facilitates

efficient use of nodes on clusters that espouse node exclusivity (no more than one user

per node). The launcher is a simple MPI wrapper, which takes in a list of all the individual

tasks (JobList.txt) and places them on the available cores within the multi-node qsub

reservation on the cluster. If you give it more tasks than cores, then it will start the first

batch of tasks on the available cores, and keep starting new ones as the tasks complete

and cores become available. For each ID in this batch, use the

generateBatchScripts.prefetch.py script to automatically create a bash script like the

following. This is your “Anisimov task” for this batch:

/base/batches/batch_list/batchX.txt SRR123 SRR234 SRR345 SRR456
SRR567

Data Download: SRA files

protocols.io | https://dx.doi.org/10.17504/protocols.io.kb6csre October 17, 2017 5/13

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.kb6csre

The generateBatchScripts.prefetch.py will also construct the JobList.txt file that lists the

names and locations of these scripts in the following format:

... and so on.

Use this Python script to generate both the shell scripts for each sample and the jobList

file:

#!/bin/bash # If downloading dbGaP data, prefetch must be called
from within the project space folder cd /base/Project_Space #
Download the SRA file /path/to/sra-toolkit/bin/prefetch -L debug -
t fasp -v -v

/base/batches/batchX/SRR123 SRR123.sh /base/batches/batchX/SRR234
SRR234.sh /base/batches/batchX/SRR345 SRR345.sh
/base/batches/batchX/SRR456 SRR456.sh /base/batches/batchX/SRR567
SRR567.sh

protocols.io | https://dx.doi.org/10.17504/protocols.io.kb6csre October 17, 2017 6/13

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.kb6csre

There are two arguments passed to this script at runtime: the location of the batchX.txt

file created earlier and the name of the batch. It can be invoked with the following

command:

This will generate the jobList.txt file and the necessary bash scripts and put them in their

own directory within the batches folder:

/base/scripts/generateBatchScripts.prefetch.py (modify with paths
to suit your needs) #!/usr/bin/python import os import os.path
import sys ### GLOBAL VARIABLES sraListFile = sys.argv[1]
batchName = sys.argv[2] batchFullPath = "base/batches/" +
batchName SRA_list = [] ### FUNCTION DEFINITIONS def
createScripts(SRA_ID): subDirName = batchFullPath + "/" +
SRA_ID # Create the subdirectory within the batch directory
if (not os.path.isdir(subDirName)): os.mkdir(subDirName)
Create the shell script file shellFile = open(subDirName +
"/" + SRA_ID + ".sh", "w") # Write to the file
shellFile.write("#!/bin/bash\n\n") shellFile.write("cd
base/Project_Space\n\n") shellFile.write("# Download the SRA
file\n") shellFile.write("/path/to/sra-toolkit/bin/prefetch -L
debug -t fasp -v -v " \ + SRA_ID + "\n\n")
shellFile.close() def makeJobListFile(): jobListFile =
open("base/jobLists/" + batchName + "_JobList.txt", "w") for i
in SRA_list: # Write the jobList for the Anisimov launcher
Something like "/base/batches/batch1/SRR123 SRR123.sh"
jobListFile.write(batchFullPath + "/" + i + " " + i + ".sh\n")
jobListFile.close() ### IMPLEMENTATION # Get the list of SRA IDs
with open(sraListFile) as F: for line in F:
SRA_list.append(line.strip()) # If the batch directory does not
exist, create it if (not os.path.isdir(batchFullPath)):
os.mkdir(batchFullPath) # Create the subdirectories and shell
scripts for i in SRA_list: createScripts(i) makeJobListFile()

python generateBatchScripts.prefetch.py
/base/batches/batch_lists/batchX.txt batchX

/base/batches/batchX/SRR123/SRR123.sh
/base/batches/batchX/SRR234/SRR234.sh
/base/batches/batchX/SRR345/SRR345.sh

protocols.io | https://dx.doi.org/10.17504/protocols.io.kb6csre October 17, 2017 7/13

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.kb6csre

... and so on.

Step 3: Create the prefetch qsub script
To use the Anisimov Launcher to schedule jobs, construct a qsub script. These are

stored in the /base/qsubs directory. Our tests suggest that 15 samples can be

downloaded on a node simultaneously, as long as they are spaced out over the cores (on

a cray system we supply the “-d 2” flag to aprun).

The qsub script should look something like the example qsub below, which assumes a

batch of 1,200 samples.

This script will launch all the bash scripts (15/node). Both stdout and stderr will be piped

to /base/qsubs/logs/batchX_prefetch.log.

Step 4: Running the prefetch qsub script
Unfortunately, as prefetch runs, some of the SRA downloads will fail. To prevent a single

failure from killing the Anisimov Job and the other downloads occurring in parallel, the -

noexit flag is used (see the box above). However, this means the download may

eventually reach a point at which all the SRAs have finished downloading, but the job just

sits without making progress. This is just a consequence of the Anisimov Launcher code

design.

To prevent this from wasting resources, monitor the size of the /base/Project_Space/sra

folder during the download using the following command:

#nodes = batch_size/15 Aprun’s -n flag = #nodes * 16 Aprun’s -N
flag = 16

/base/qsubs/batchX_prefetch.qsub #!/bin/bash #PBS -N sra_X #PBS
-l walltime=1:15:00 #PBS -l nodes=80:ppn=32 #PBS -A groupid #PBS -
q normal aprun -n 1280 -N 16 -ss -d 2
~anisimov/scheduler/scheduler.x \
/base/jobLists/batchX_JobList.txt /bin/bash -noexit &>
/base/qsubs/logs/batchX_prefetch.log

ls –l /base/Project_Space/sra | head

protocols.io | https://dx.doi.org/10.17504/protocols.io.kb6csre October 17, 2017 8/13

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.kb6csre

If the size of the sra/ folder does not appear to grow for five minutes or so, go ahead and

kill the job (yes, it is a hack at this point, and one could automate it if desired):

As the SRAs are downloaded, temporary files are generated in the sra/ folder. If those

files are present the next time you attempt to download this ID, the download will fail. To

prevent this from happening, delete the .tmp and .lock files with the following

commands:

Step 5: Determine which SRA IDs did not finish
downloading
After removing the .tmp and .lock files, run the following script:

This script grabs the IDs in the batch file and checks to see whether each SRA file is

found in the sra/ folder. Invoke with the following command:

qdel JobID

cd /base/Project_Space/sra rm *.tmp.aspera-ckpt rm *.tmp.partial
rm *.lock rm *.tmp rm *.vdbcache.cache rm *.vdbcache

/bash/scripts/checkSRAsDownloaded.py import sys import glob
batch_list = sys.argv[1] # List of IDs batch_IDs = [] with
open(batch_list) as F: for line in F:
batch_IDs.append(line.strip()) IDs_found = [] for f in
glob.glob("/base/Project_Space/sra/*"): split_string =
f.split("/") ID = split_string[-1].split('.')[0]
IDs_found.append(ID) # Remove redundant IDs_found =
list(set(IDs_found)) count_missing = 0 for i in batch_IDs:
if i not in IDs_found: print(i) count_missing += 1
print("\nIDs that are missing") print(count_missing)

python /base/scripts/checkSRAsDownloaded.py
/base/batches/batch_lists/batchX.txt

protocols.io | https://dx.doi.org/10.17504/protocols.io.kb6csre October 17, 2017 9/13

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.kb6csre

Any SRA IDs that are not present in the sra/ folder will be printed out, as well as the total

number that were not downloaded. Copy these IDs and put them in a new batch.txt file in

/base/batches/batch_lists. We found it effective to name this new file batchX.1, then

name the next iteration batchX.2, and so on. Repeat the downloading steps until all SRA

IDs are accounted for.

Note: On each iteration, reduce the resources requested in each qsub script so that

resources are not wasted.

6 Because the refseq reference data ares already downloaded, it will be easy to convert

the SRA files to fastq.gz files.

However, first, it makes sense to check that the SRA files are intact using sra-validate.

Call both

sra-validate and fastq-dump in the same shell script, as shown in the following example

script:

This script will run sra-validate and store its output in the validation_out. If an error is

found, the output is copied into the validation_error/ folder and fastq-dump is not run.

Otherwise, fastq-dump runs as expected.

These Anisimov launcher scripts are generated in the same way that the prefetch scripts

were generated earlier, with a python script that generates the jobList.txt file and the

shell scripts for each sample (next page).

#!/bin/bash cd /base/Project_Space /path/to/sra-toolkit/bin/vdb-
validate .sra &> \
/base/Project_Space/validation_outputs/batchX/.validation_out if
grep -q 'err'
/base/Project_Space/validation_outputs/batchX/.validation_out;
then echo 'Verification of .sra failed' cp
/base/Project_Space/validation_outputs/batchX/.validation_out \
/projects/sciteam/baib/InputData_DoNotTouch/dbGaP-
13335/validation_failures/batch5 else echo 'No errors
found in .sra' # Convert the SRA into fastq
/path/to/sra-toolkit/bin/fastq-dump -v --gzip --split-files \
-O /base/fastq_files/batchX /base/Project_Space/sra/.sra fi

Data Conversion: SRA to fastq.gz

protocols.io | https://dx.doi.org/10.17504/protocols.io.kb6csre October 17, 2017 10/13

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.kb6csre

/base/scripts/generateBatchScripts.fastq-dump.py (modify with
paths to suit your needs) #!/usr/bin/python import os import
os.path import sys ### GLOBAL VARIABLES sraListFile =
sys.argv[1] batchName = sys.argv[2] batchFullPath =
"/base/batches/" + batchName SRA_list = [] ### FUNCTION
DEFINITIONS def createScripts(SRA_ID): subDirName =
batchFullPath + "/" + SRA_ID # Create the subdirectory within
the batch directory if (not os.path.isdir(subDirName)):
os.mkdir(subDirName) # Create the shell script file
shellFile = open(subDirName + "/" + SRA_ID + ".sh", "w") #
Write to the file shellFile.write("#!/bin/bash\n\n")
shellFile.write("cd /base/Project_Space\n\n")
shellFile.write("/path/to/sra-toolkit/bin/vdb-validate " + SRA_ID
+ ".sra &> \
/base/Project_Space/validation_outputs/" + batchName + "/" +
SRA_ID \ + ".validation_out\n\n")
shellFile.write("if grep -q 'err'
/base/Project_Space/validation_outputs/" \ +
batchName + "/" + SRA_ID + ".validation_out; then\n")
shellFile.write("\techo 'Verification of " + SRA_ID + ".sra
failed'\n") shellFile.write("\tcp
/base/Project_Space/validation_outputs/" + batchName + "/" \
+ SRA_ID + ".validation_out
/base/Project_Space/validation_failures/" \
+ batchName + "\n") shellFile.write("else\n")
shellFile.write("\techo 'No errors found in " + SRA_ID +
".sra'\n") shellFile.write("\t# Convert the SRA into
fastq\n") shellFile.write("\t/path/to/sra-toolkit/bin/fastq-
dump -v --gzip --split-files \ -O
/base/fastq_files/" + batchName + " /base/Project_Space/sra/" \
+ SRA_ID + ".sra\n") shellFile.write("fi\n")
shellFile.close() def makeJobListFile(): jobListFile =
open("/base/jobLists/" + batchName + "_JobList.txt", "w") for
i in SRA_list: # Write the jobList for the Anisimov
launcher # Something like "/base/batches/batch1/SRR123
SRR123.sh" jobListFile.write(batchFullPath + "/" + i + " "
+ i + ".sh\n") jobListFile.close() ### IMPLEMENTATION # Get
the list of SRA IDs with open(sraListFile) as F: for line in
F: SRA_list.append(line.strip()) # If the batch directory
does not exist, create it if (not os.path.isdir(batchFullPath)):
os.mkdir(batchFullPath) # Create the subdirectories and shell
scripts for i in SRA_list: createScripts(i) makeJobListFile()
try:# Create directory in the validation folders
os.mkdir("/base/Project_Space/validation_outputs/" + batchName)

protocols.io | https://dx.doi.org/10.17504/protocols.io.kb6csre October 17, 2017 11/13

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.kb6csre

This script is invoked in the same way that the prefetch script generator was:

Note: This script will overwrite the jobList and the batch scripts generated from the

prefetch generator for batchX. However, all the files will have already been downloaded.

Create and run the fastq-dump qsub script
The SRA to FASTQ conversion itself typically proceeds without error. Although the batch

was downloaded in iterations, the whole batch can generally be converted in one step.

The qsub looks something like the following, assuming a batch size of 1,200 samples:

This script will launch all the bash scripts (15/node). Both stdout and stderr will be piped

to /base/qsubs/logs/batchX_fastq-dump.log.

After this script completes, run the following script to verify that all the fastq files are

present:

os.mkdir(“/base/Project_Space/validation_failures/" + batchName)
except: pass

cd /base/scripts python generateBatchScripts.fastq-dump.py
../batches/batch_lists/batchX.txt batchX

/base/qsubs/batchX_fastq-dump.qsub #!/bin/bash #PBS -N sra_X
#PBS -l walltime=6:00:00 #PBS -l nodes=80:ppn=32 #PBS -A groupid
#PBS -q normal aprun -n 1280 -N 16 -ss -d 2
~anisimov/scheduler/scheduler.x /base/jobLists/batchX_JobList.txt
/bin/bash -noexit &> /base/qsubs/logs/batchX_fastq-dump.log

protocols.io | https://dx.doi.org/10.17504/protocols.io.kb6csre October 17, 2017 12/13

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.kb6csre

Invoke with the following command:

At this point, the download and conversion are complete. If any fastq files are absent,

inspect the validation_error files to find out why. Re-download the SRA files if necessary.

You now have a complete set of FASTQ files from NCBI. We hope you found this

protocol useful.

/base/scripts/checkFastqsConverted.py #!/usr/bin python """ This
script checks to see how many IDs in a given list are found within
the sra folder It prints those that are not present """ import
sys import glob batch_list = sys.argv[1] fastq_batch =
sys.argv[2] # List of IDs batch_IDs = [] with open(batch_list)
as F: for line in F: batch_IDs.append(line.strip())
fastqs_found = [] for f in glob.glob(fastq_batch + "/*"):
split_line = f.split("/") fastqs_found.append(split_line[-1])
count_missing = 0 for i in batch_IDs: fq1 = i +
"_1.fastq.gz" fq2 = i + "_2.fastq.gz" if fq1 not in
fastqs_found: print fq1 count_missing += 1
else: # Remove it from the list, so if any IDs are left in the
end, those IDs should not be in this directory
fastqs_found.remove(fq1) if fq2 not in fastqs_found:
print fq2 count_missing += 1 else:
fastqs_found.remove(fq2) print("\nFastq files that are missing")
print(count_missing) print("\nThese IDs were found but shouldn't
be here") print(fastqs_found)

python /base/scripts/checkFastqsConverted.py
/base/batches/batch_lists/batchX.txt /base/fastq_files/batchX

7 We are grateful to Ms. Katherine Kendig for editorial help with this guide. This research is

part of the Blue Waters sustained-petascale computing project, which is supported by

the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state

of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign

and its National Center for Supercomputing Applications.

Acknowledgements

protocols.io | https://dx.doi.org/10.17504/protocols.io.kb6csre October 17, 2017 13/13

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.kb6csre

