

Jan 15, 2024

snPATHO-seq

Communications Biology

DOI

dx.doi.org/10.17504/protocols.io.8epv5×58dg1b/v1

Tony Wang¹, Michael Roach², Jasmine Plummer³, Luciano G Martelotto²

¹Garvan Medical Institute; ²Adelaide Centre for Epigenetics, University of Adelaide; ³University of Adelaide Jasmine Plummer: Center for Spatial OMICs, St Jude Children's Research Hospital;

Human Cell Atlas Metho...

Single Cell Core, Harvar...

1 more workspace

Michael Roach

Flinders Health and Medical Research Institute, Flinders Uni...

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.8epv5x58dg1b/v1

Protocol Citation: Tony Wang, Michael Roach, Jasmine Plummer, Luciano G Martelotto 2024. snPATHO-seq. protocols.io https://dx.doi.org/10.17504/protocols.io.8epv5x58dg1b/v1

Manuscript citation:

Manuscript (Communications Biology): https://doi.org/10.1038/s42003-024-07043-2

Preprint: https://doi.org/10.1101/2023.12.07.570700 bio-protocol: https://doi.org/10.21769/BioProtoc.5291

Printable Workflow: https://doi.org/10.6084/m9.figshare.25210913.v1

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: January 09, 2024

Last Modified: January 15, 2024

Protocol Integer ID: 93229

Keywords: nucleus transcriptomic data from ffpe sample, cell omics research, cell genomic technology, transcriptomic data, rna quality, rna, low dna, cell, dna

Abstract

Formalin-fixed paraffin-embedded (FFPE) samples are valuable but under-utilised in single-cell omics research due to their low DNA and RNA quality. Leveraging recent single-cell genomic technology advances, we introduce snPATHO-seq: a versatile method to derive high-quality single-nucleus transcriptomic data from FFPE samples.

Materials

Reagents and consumables

- Ethanol
- Xylene
- Nuclease Free water
- 1x Phosphate Buffer Saline (PBS, Ca2+ and Mg2+ free)
- Liberase TM or TH (Roche)
- Collagenase D or P (Roche)
- Hyaluronidase (CAS 37326-33-3, Calbiochem)
- RPMI1640 (Gibco)
- EZ Lysis Buffer (Sigma)
- 10% BSA (MACS® BSA Stock Solution, Miltenyi)
- Glycerol 50%
- RNAse Inhibitor (RiboLock from Thermo or RNA Protector from Roche)
- (Optional) 4',6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI, ThermoFisher)
- 40 um and 70 um pluriStrainer filters (pluriSelect) (MACS SmartStrainers are also possible)
- 25 G needle

Equipment

- Thermomixer with adjustable shaking (Eppendorf)
- Swinging bucket refrigerated centrifuge

Troubleshooting

Paraffin removal

Cut 1 or 2 approximately 25 µm-thick sections (punches are also possible) and transfer to a 1.5 mL Eppendorf tube.

Note

Store dry at 4°C if not used immediately. To keep it dry store in a container with silica beads. You can use the cylinder with silica beads that comes with 10x Genomics chips.

2 Add 🚨 1 mL Xylene and incubate for 🚫 00:10:00 at 🖁 Room temperature or \$ 50-55 °C

Note

Optional: heat at 50-55°C for 10 mins for the first xylene wash. This has proven to be very helpful in removing the paraffin more efficiently, in particular with fatty tissue.

- 3 Carefully remove Xylene without disturbing the sample.
- Repeat steps 2 and 3 two more times: Add 4 1 mL Xylene , incubate 000:10:00 at 8 Room temperature , remove xylene Add 🚨 1 mL Xylene , incubate 🚫 00:10:00 at 🖁 Room temperature , remove

Rehydration

xylene

5

Note

OVERVIEW: Wash sections with sequential ethanol immersions: 2x 100%, 1x 70%, 1x 50%, 1x 30%). Lastly, wash with RPMI1640.

10m

20m

1m

Add 4 1 mL 100% ethanol and incubate for 00:01:00 at 8 Room temperature, then carefully remove ethanol without disturbing the sections/punches. 6 Repeat step 5: add 4 1 mL 100% ethanol, incubate for 600:01:00 at 1m Room temperature , remove ethanol wash 7 Add 🚨 1 mL 70% ethanol , incubate for 🚫 00:01:00 at 🖁 Room temperature , 1m remove ethanol wash 8 Add 4 1 mL 50% ethanol, incubate for 00:01:00 at 8 Room temperature, 1m remove ethanol wash 9 Add \perp 1 mL 30% ethanol , incubate for \bigcirc 00:01:00 at \parallel Room temperature , 1m remove ethanol wash 10 Add 🚨 1 mL RPMI1640 , incubate for 🚫 00:01:00 at 🖁 Room temperature , 1m

Tissue dissociation

11 Prepare 4 1 mL Dissociation Solution:

carefully remove RPMI1640 wash

- ∆ 1 mL RPMI1640
- [M] 0.25-1 mg/mL Liberase TM(*)
- [M] 0.25-1 mg/mL 10x Collagenase D(**)
- [M] 0.25-1 mg/mL Hyaluronidase
- [M] 1 U/uL RNAse Inhibitor

Add this 4 1 mL Dissociation Solution to the sections/punches.

Note

(*) Liberase TH is very good enzyme too and can be used alone at 1-2.5 mg/mL. (**) Collagenase P (Roche) works fine as well.

IMPORTANT: I strongly recommend testing what concentration of enzymes works best for your tissue of interest. In our experience, Liberase TH alone at 1 mg/mL or the trio at 1 mg/mL Liberase TM + 1 mg/mL Collagenase D + 0.5 mg/mL Hyaluronidase works well with most of the samples we tested.

- **Pro tip**: Add 200 µL of the enzymatic cocktail and mince using a pestle for at least 10 strokes, then complete to 1 mL with the rest of the cocktail mix.
- **Optional Pro tip**: Before digestion, add 100 μL of digestion mix and homogenize the sample using a douncer/pestle by stroking 10-20 times. This helps in the digestion step. Then top up with the rest of the digestion mix.
- 12 Digest tissue for 45-60 mins(*) at 37°C in a Thermomixer at 800 RPM.

5 800 rpm, 37°C, 00:45:00 in Thermomixer

45m

Note

(*) Some blocks require longer digestion time. Inspect visually and help dissociation by pipetting up and down with a P1000 pipette.

IMPORTANT: Dissociation does not need to be complete; the objective here is to loosen up the material to facilitate the nuclei release. Dissociation completeness varies from block to block. Tissue does not need to be fully digested.

Lysing the cells

13

5m

Note

OVERVIEW: Wash with lysis buffer. Resuspend and homogenize in small volume of lysis buffer. Add rest of lysis buffer and homogenise several times.

Add $400 \,\mu$ L Ez Lysis Buffer to the sample and mix by inverting 5 times, then centrifuge $850 \, \text{rcf}$, 4°C , 00:05:00

- 14 Prepare 4 2 mL Lysis Solution as follows:

 - [M] 2 % (v/v) BSA
 - [M] 1 U/uL RNAse Inhibitor
- 15 Remove supernatant and add Δ 250 μL Lysis Solution (from step 14)
- Homogenize the sample using a douncer/pestle by stroking 10-20 times (or as needed).
- 17 Add a further Δ 750 μL Lysis Solution (from step 14)
- Homogenize by pipetting using a P1000 pipette (10 times), then incubate On ice for 00:05:00
- Repeat step 18: pipette 10 times and incubate On ice for 00:05:00
- Optional but very useful when possible: If the dissociation and disaggregation look almost complete (i.e. only very small chunks of undigested tissue or fat are visible to the naked eye) gently pass the sample through a 25G needle for 20 times (avoid foaming). It is essential to ensure that no large chunks remain *before* passing though needle. If large chunks or fat remain the needle will definitely block, so just skip this step. This optional step will increase the nuclei release.

Cleaning the nuclei

21

Note

OVERVIEW: Filter (large pore size). Wash with lysis solution. Wash with PBS. Filter (small pore size).

Prepare 4 5 mL Wash Solution as follows:

5m

- [M] 0.02 % volume BSA
- 22 Pass the sample through a 70 µm PluriStrainer filter to remove large chunks of undigested tissue.

Note

Do not use a FLOWMI cell strainer!

23 Centrifuge the flow-through 850 rcf, 4°C, 00:05:00

5m

- 24 Remove supernatant and resuspend with 4 800 µL Lysis solution (from step 14)
- 25

5m

26 Remove supernatant and resuspend in \$\leq 500-1000 \mu L Wash solution (from step 21)

Note

Resuspension volume can vary depending on the pellet size.

27

5m

5m

28 Repeat wash steps 26 and 27: remove supernatant, resuspend in

🚨 500-1000 μL Wash solution (from step 21) and centrifuge

- **850** rcf, 4°C, 00:05:00
- 29 Remove supernatant and resuspend in

 \perp 500-1000 µL Wash solution (from step 21)

Pass sample through a 40 μm PluriStrainer filter

Note

Do not use a FLOWMI cell strainer!

Using the nuclei

30 Count using Luna-FX7 or similar based on dual-fluorescence such as AO/PI.

31

Note

Cycling conditions for Index PCR might need to be optimized per sample to obtain a final library that falls within $\sim\!50\text{-}200$ nM. For nuclei derived from FFPE blocks, we typically use 1-2 additional cycles during indexing to start with. If the library does not reach the recommended range but the Bionalyzer/Fragment Analyzer/Tapestation traces look as expected (single peak at $\sim\!265$ bp), then do not add additional cycles. If you see signs of under/over amplification in the traces, then adjust cycling accordingly.

STEP CASE

Steps for immediate usage 1 step

Rest on wet ice for immediate FACS cytometry analysis/sorting, or proceed to the Chromium X run using Chromium Fix RNA Profiling (10x Genomics) following the user guide for singleplexed or multiplexed samples accordingly.