This library preparation protocol can be easily adapted for different indexing strategies. Combinations of indexed primes can be used for generating single- or double-indexed libraries. In the first case, PCR_F_universal primer is used in combination with PCR_R_**** primers. For double indexed libraries, the combinations of PCR_F_**** and PCR_R_**** can be used for up to 384 combinations with the primers listed below.
Additionally, libraries can be prepared by adding inline index (barcode) to the adapters and amplified either with unindexed illumina primers, or single- or double-indexing strategy. This sequence is then present at the begining of the reads and can be used for sample demultiplexing.
Finally, by combining inline barcode with indexed forward and reverse primers, triple-indexed libraries can be constructed. This design is especially useful for the libraries used for the sequence-capture protocols. In such experiments, the reads are captured on DNA or RNA baits and reamplified afterwards. If performed on pooled samples, the post-capture PCR can cause chimeric reads formation among hopmologous sequences from different specimans. Triple-indexing strategy allows for controlling these by comparing the index combination used with the inline barcode.
Tin_P1_lower: [PHO]AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT
Tin_P1_upper: CCCTACACGACGCTCTTCCGATCT
Inline indexed (barcoded) adapters:
Tin_P1_lower_barcoded: [PHO]nnnnnnnnAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT
Tin_P1_upper_barcoded: CCCTACACGACGCTCTTCCGATCTnnnnnnnn
The barcode sequences (nnnnnnnn) can be designed using published scripts (https://bioinf.eva.mpg.de/multiplex/). To prepare 25 μM working solution, mix 50 μl of the upper and lower oligos (100 μM stock) with 40 μl of water and 10 μl of the 10x annealing buffer to obtain 100 μL of working solution. Adapters have to be annealed as follows: heat to 95°C for 1 minute and slowly bring to 20°C with a ramp of 0.1°C/s. Oligo used in the second-strand synthesis step:
Tin_P2-C5: GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCCCC
forward: AATGATACGGCGACCACCGAGATCTACACnnnnnnnACACTCTTTCCCTACACGACGC
reverse: CAAGCAGAAGACGGCATACGAGATnnnnnnnGTGACTGGAGTTCAGACGTGTGC
PCR_F_A501: AATGATACGGCGACCACCGAGATCTACACTGAACCTTACACTCTTTCCCTACACGACGC
PCR_F_A502: AATGATACGGCGACCACCGAGATCTACACTGCTAAGTACACTCTTTCCCTACACGACGC
PCR_F_A503: AATGATACGGCGACCACCGAGATCTACACTGTTCTCTACACTCTTTCCCTACACGACGC
PCR_F_A504: AATGATACGGCGACCACCGAGATCTACACTAAGACACACACTCTTTCCCTACACGACGC
PCR_F_A505: AATGATACGGCGACCACCGAGATCTACACCTAATCGAACACTCTTTCCCTACACGACGC
PCR_F_A506: AATGATACGGCGACCACCGAGATCTACACCTAGAACAACACTCTTTCCCTACACGACGC
PCR_F_A507: AATGATACGGCGACCACCGAGATCTACACTAAGTTCCACACTCTTTCCCTACACGACGC
PCR_F_A508: AATGATACGGCGACCACCGAGATCTACACTAGACCTAACACTCTTTCCCTACACGACGC
PCR_F_D501: AATGATACGGCGACCACCGAGATCTACACTATAGCCTACACTCTTTCCCTACACGACGC
PCR_F_D502: AATGATACGGCGACCACCGAGATCTACACATAGAGGCACACTCTTTCCCTACACGACGC
PCR_F_D503: AATGATACGGCGACCACCGAGATCTACACCCTATCCTACACTCTTTCCCTACACGACGC
PCR_F_D504: AATGATACGGCGACCACCGAGATCTACACGGCTCTGAACACTCTTTCCCTACACGACGC
PCR_F_D505: AATGATACGGCGACCACCGAGATCTACACAGGCGAAGACACTCTTTCCCTACACGACGC
PCR_F_D506: AATGATACGGCGACCACCGAGATCTACACTAATCTTAACACTCTTTCCCTACACGACGC
PCR_F_D507: AATGATACGGCGACCACCGAGATCTACACCAGGACGTACACTCTTTCCCTACACGACGC
PCR_F_D508: AATGATACGGCGACCACCGAGATCTACACGTACTGACACACTCTTTCCCTACACGACGC
PCR_F_universal: AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG
PCR_R_A701: CAAGCAGAAGACGGCATACGAGATGTCGTGATGTGACTGGAGTTCAGACGTGTGC
PCR_R_A702: CAAGCAGAAGACGGCATACGAGATACCACTGTGTGACTGGAGTTCAGACGTGTGC
PCR_R_A703: CAAGCAGAAGACGGCATACGAGATTGGATCTGGTGACTGGAGTTCAGACGTGTGC
PCR_R_A704: CAAGCAGAAGACGGCATACGAGATCCGTTTGTGTGACTGGAGTTCAGACGTGTGC
PCR_R_A705: CAAGCAGAAGACGGCATACGAGATTGCTGGGTGTGACTGGAGTTCAGACGTGTGC
PCR_R_A706: CAAGCAGAAGACGGCATACGAGATGAGGGGTTGTGACTGGAGTTCAGACGTGTGC
PCR_R_A707: CAAGCAGAAGACGGCATACGAGATAGGTTGGGGTGACTGGAGTTCAGACGTGTGC
PCR_R_A708: CAAGCAGAAGACGGCATACGAGATGTGTGGTGGTGACTGGAGTTCAGACGTGTGC
PCR_R_A709: CAAGCAGAAGACGGCATACGAGATTGGGTTTCGTGACTGGAGTTCAGACGTGTGC
PCR_R_A710: CAAGCAGAAGACGGCATACGAGATTGGTCACAGTGACTGGAGTTCAGACGTGTGC
PCR_R_A711: CAAGCAGAAGACGGCATACGAGATTTGACCCTGTGACTGGAGTTCAGACGTGTGC
PCR_R_A712: CAAGCAGAAGACGGCATACGAGATCCACTCCTGTGACTGGAGTTCAGACGTGTGC
PCR_R_D701: CAAGCAGAAGACGGCATACGAGATCGAGTAATGTGACTGGAGTTCAGACGTGTGC
PCR_R_D702: CAAGCAGAAGACGGCATACGAGATTCTCCGGAGTGACTGGAGTTCAGACGTGTGC
PCR_R_D703: CAAGCAGAAGACGGCATACGAGATAATGAGCGGTGACTGGAGTTCAGACGTGTGC
PCR_R_D704: CAAGCAGAAGACGGCATACGAGATGGAATCTCGTGACTGGAGTTCAGACGTGTGC
PCR_R_D705: CAAGCAGAAGACGGCATACGAGATTTCTGAATGTGACTGGAGTTCAGACGTGTGC
PCR_R_D706: CAAGCAGAAGACGGCATACGAGATACGAATTCGTGACTGGAGTTCAGACGTGTGC
PCR_R_D707: CAAGCAGAAGACGGCATACGAGATAGCTTCAGGTGACTGGAGTTCAGACGTGTGC
PCR_R_D708: CAAGCAGAAGACGGCATACGAGATGCGCATTAGTGACTGGAGTTCAGACGTGTGC
PCR_R_D709: CAAGCAGAAGACGGCATACGAGATCATAGCCGGTGACTGGAGTTCAGACGTGTGC
PCR_R_D710: CAAGCAGAAGACGGCATACGAGATTTCGCGGAGTGACTGGAGTTCAGACGTGTGC
PCR_R_D711: CAAGCAGAAGACGGCATACGAGATGCGCGAGAGTGACTGGAGTTCAGACGTGTGC
PCR_R_D712: CAAGCAGAAGACGGCATACGAGATCTATCGCTGTGACTGGAGTTCAGACGTGTGC
For index 1 (i7) - use the reverse complementary sequence in bold from reverse primers.
For index 2 (i5) for NovaSeq, MiSeq, HiSeq 2000/2500 systems - use the sequence of the one in bold from forward primers.
For index 2 (i5) for iSeq 100, MiniSeq, NextSeq 550, NextSeq 500, HiSeq 4000, and HiSeq 3000 systems - use the reverse complementary sequence in bold from forward primers.