Nov 02, 2018 Version 1

Single-cell mapping of lineage and identity via CellTagging V.1

DOI

dx.doi.org/10.17504/protocols.io.u9yez7w

Samantha A Morris¹, Brent A. Biddy¹, Wenjun Kong¹, Kenji Kamimoto¹, Chuner Guo¹, Sarah Waye¹, Tao Sun¹

¹Washington University, Saint Louis

Morris Lab

Samantha A Morris

Brigham and Women's Hospital; Harvard Medical School

DOI: <u>dx.doi.org/10.17504/protocols.io.u9yez7w</u>

Protocol Citation: Samantha A Morris, Brent A. Biddy, Wenjun Kong, Kenji Kamimoto, Chuner Guo, Sarah Waye, Tao Sun 2018. Single-cell mapping of lineage and identity via CellTagging. **protocols.io** <u>https://dx.doi.org/10.17504/protocols.io.u9yez7w</u>

Manuscript citation:

https://www.biorxiv.org/content/early/2017/04/28/127860

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: In development We are still developing and optimizing this protocol

Created: November 02, 2018

Last Modified: November 02, 2018

Protocol Integer ID: 17432

Keywords: cell barcoding, lineage tracing, single-cell analysis, direct lineage reprogramming

Abstract

Single-cell technologies are offering unprecedented insight into complex biology, revealing the behavior of rare cell populations that are typically masked in bulk population analyses. One current limitation of single-cell approaches is that lineage relationships are lost as a result of cell processing, restricting interpretations of the data collected. Elegant computational approaches have been developed in an effort to infer these missing observations, but it remains a challenge to reconstruct true reprogramming trajectories using these tools. Although sophisticated lineage tracing solutions to connect cell history with fate are emerging, these protocols are either not compatible with high-throughput scRNA-seq, or require genome editing strategies that are not readily deployed in some systems. Here, our protocol describes a single-cell resolution clonal tracking approach, 'CellTagging', based on combinatorial cell indexing, permitting the parallel capture of lineage information and cell identity. CellTagging integrates with high-throughput single-cell RNA-sequencing, where iterative rounds of cell labeling enable the construction of multi-level lineage trees. This straightforward lentiviral-labeling approach can be applied to an array of cell biological applications to simultaneously profile lineage and identity, at single-cell resolution.

Materials

MATERIALS

- 🔀 Stellar Competent Cells Takara Bio Inc. Catalog #636763
- X CellTag pooled library V1 addgene Catalog #115643
- X CellTag pooled library V2 addgene Catalog #115644
- X CellTag pooled library V3 addgene Catalog #115645

Safety warnings

Isor generation of lentivirus, the appropiate institutional regualations must be satisfied.

Amplification of CellTag library	
1	
	Thaw Stellar Competent Cells in an ice bath just before use.
2	After thawing, mix 100 uL of cells with 10-50 ng of CellTag V1 DNA in a 1.5-mL microcentrifuge tube.
3	Place transformation mixture on ice for 30 minutes.
4	Heat shock the cells for exactly 60 seconds at 42 °C.
5	Place tube on ice for 1-2 minutes.
6	Add SOC medium to bring the final volume to 1000 uL.
7	Incubate by shaking (~250 rpm) for 1 hour at 37 °C.
8	Take 6 uL of the recovery. Use 1 uL of this to prepare a 1:10 and then a 1:100 dilution. Plate both dilutions and the rest of the 5 uL of recovery onto three separate LB/Amp
	plates. Grow overhight at 37°C.
9	Add the rest of the recovery to 500 mL of LB+Amp. Grow overnight while shaking (~250 rpm) at37 °C .
10	After counting the CFUs from the LB/Amp plates the next day, calculate the transformation efficiency.
11	Harvest the cells from the liquid culture and use multiple Maxiprep columns (Sigma or Zymogen) to purify the library.
12	

