Jan 10, 2020

Simulating colonic tissue mechanics using a structure-based material model in Abaqus

DOI

dx.doi.org/10.17504/protocols.io.wzeff3e

Bhavesh Patel¹

¹California Medical Innovations Institute

Bhavesh Patel

DOI: dx.doi.org/10.17504/protocols.io.wzeff3e

Protocol Citation: Bhavesh Patel 2020. Simulating colonic tissue mechanics using a structure-based material model in Abaqus. protocols.io <u>https://dx.doi.org/10.17504/protocols.io.wzeff3e</u>

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: January 10, 2019

Last Modified: January 10, 2020

Protocol Integer ID: 19206

Keywords: Finite element, strain energy function, mechanical stress

Abstract

The structure-based material constitutive model typically used for the colon tissue (DOI:10.1016/j.jmbbm.2017.08.031, DOI:10.1016/j.jmbbm.2013.02.016) is not readily available in the Finite Element

software Abaqus, which is commonly used for biomechanical simuations. In this protocol, we provide step-bystep guidelines to use such material model in Abaqus using the User Subroutine implemented by the autor.

Guidelines

This protocol has been tested with Abaqus 6.13.

Before start

This protocols assume that you have Abaqus installed along with appropriate software to run Abaqus User Subroutines (e.g., <u>see this document</u>)

Assign user material model

- 1 Go the the "Property" module of Abaqus and click on "Create Material".
- 2 Enter "UANISO_HGO" for the name of the material in the "Edit Material" dialog box that opens, and select General \rightarrow User Material.

<u>×zz¥</u> , ž ,1234. ⊧®	Property defaults	
Module: Proper	ty 🗸 Model: 🗘 Model-1 🗸 Part: 🗘 Tube	\sim
t. 5. in 10		
🗕 🔶 Edit Material		×
Name: UANISO_HGO		
Description:		
Material Behaviors		
<u>G</u> eneral <u>M</u> echanical <u>T</u> h	ermal <u>E</u> lectrical/Magnetic <u>O</u> ther	Y.
<u>D</u> ensity		16
Dep <u>v</u> ar Regularization		S.
User Material		is.
User Defined <u>F</u> ield		1
User <u>O</u> utput Variables		1
		1
eDr ::\UOK	Cancel	

3 Click "OK" and assign the material to the desired sections of your model, as you would typically do with any material property.

Generate input file

- 4 Once your model setup is completed (geometry definition, orientation assigment, meshing, etc.), go to the "Job" module and click on "Create Job".
- 5 Give a job name (e.g., MyJob) and select "Continue", then "OK" in the next dialog box.

6 Your job should be now listed in the "Job Manager" dialog box. Select it and click "Write Input". An input file (MyJob.inp) must have been created in your Work Directory.

	Name	Model	Туре	Status	Write Inp
	Colon_inflation-HGO	File:Colon_inflation-HGO.inp	Full Analysis	Completed	Data Che
BT 💼	МуЈор	Model-1	Full Analysis	None	Submit
					Continu
					Monitor.
					Results
					Kill

Specify material parameters in input file

7 The structure-based material constitutive model typically proposed for the colon is shown below. The values of your material parameters C_10, k1_l, k2_l, k1_s, and k2_s (pre-determined from mechanical testing or gathered from pre-published work) must be specified in the input file. To do so, open the input file with any text editor (e.g. Notepad).

$$\overline{W} = C_{10}(I_1 - 3) + \frac{k_1^l}{k_2^l} \left[e^{k_2^l (\lambda_z^2 - 1)^2} - 1 \right] + \frac{k_1^s}{k_2^s} \left[e^{k_2^s (I_4^s - 1)^2} - 1 \right]$$

8 Go to the MATERIALS section of the file. You shoud see the material UANISO_HGO (defined in step 2) listed here.

 \times MyJob.inp - Notepad File Edit Format View Help _Surf-colon2_S1, S1 _Surf-colon2_S2, S2 *End Assembly *Distribution Table, name=Ori-1-DiscOrient_Table coord3D, coord3D ** ** MATERIALS ** *Material, name=UANISO_HGO ** ** ** STEP: Step-1 ** *Step, name=Step-1, nlgeom=YES, inc=10000 *Static 0.002, 1., 1e-06, 0.05 ** BOUNDARY CONDITIONS ** ** Name: BC-Xblock Type: Displacement/Rotation *Boundary Set-1, 1, 1 ** Name: BC-Yblock Type: Displacement/Rotation *Boundary Set-2, 2, 2

9 Specify the value of material parameters material parameters by entering the following lines below the name of the material (copy/past this and replace material parameter names by the desired values):

*Anisotropic Hyperelastic, user, formulation=INVARIANT, type=INCOMPRESSIBLE, local direction=3, properties=8 C_10, 0., k1_s., k2_s, 0., k1_l, k2_l, 0.

 \times MyJob.inp - Notepad File Edit Format View Help _Surf-colon2_S1, S1 _Surf-colon2_S2, S2 *End Assembly *Distribution Table, name=Ori-1-DiscOrient_Table coord3D, coord3D ** MATERIALS ** *Material, name=UANISO_HGO *Anisotropic Hyperelastic, user, formulation=INVARIANT, type=INCOMPRESSIB 325., 0., 4962., 12.06, 0., 19649., 1.95, 0. ** ** ** STEP: Step-1 ** *Step, name=Step-1, nlgeom=YES, inc=10000 *Static 0.002, 1., 1e-06, 0.05 ** BOUNDARY CONDITIONS ** ** Name: BC-Xblock Type: Displacement/Rotation *Boundary Set-1, 1, 1 ** Name: BC-Yblock Type: Displacement/Rotation

10 Save the input file and close it.

Run simulation

- 11 Go back to the "Job" module of Abaqus and create a new job.
- 12 Select "Input file" under "Source" and browse to the location of your input file then click "Continue".
- 13 Go to the "General" tab of the new dialog box "Edit Job". Under "User subroutine file", browse to the file "uanisohyper_inv_colon.for". Complete any other specification you may want to include and click "OK".

🛟 Edit Job				\times	
Name: MyJob-1					
Input file name: MyJob.in	np				
File path: C:\Users\Bhave	esh\Desktop	p\			
Submission General	Memory	Parallelization	Precision		
Preprocessor Printout					
Note: For jobs created from input files, preprocessor printout					
may be specified in the input file itsen.					
Scratch directory:					
				1	
User subroutine file:	7				
L					
ОК			Cancel		

14 You can now select your job from the "Job Manager" dialog box and click on "Submit" to run your simulation.