

Dec 09, 2024

Shake-Flask Aqueous Solubility assay (Kinetic solubility)

DOI

dx.doi.org/10.17504/protocols.io.j8nlk8y41l5r/v1

Dmytro Lesyk¹, Yurii Kheilik¹

¹Enamine Ltd

ASAP Discovery

Nick Lynch

Curlew Research, ASAP Discovery Consortium

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

[Create free account](#)

OPEN ACCESS

DOI: <https://dx.doi.org/10.17504/protocols.io.j8nlk8y41l5r/v1>

Protocol Citation: Dmytro Lesyk, Yurii Kheilik 2024. Shake-Flask Aqueous Solubility assay (Kinetic solubility). [protocols.io](#)
<https://dx.doi.org/10.17504/protocols.io.j8nlk8y41l5r/v1>

License: This is an open access protocol distributed under the terms of the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: August 14, 2024

Last Modified: December 09, 2024

Protocol Integer ID: 106073

Keywords: Kinetic solubility method, Shake-flask method, UV-Vis, LC-MS/MS detection, Drug discovery process, solubility, ADMET, flask aqueous solubility assay, kinetic solubility method, determining compound solubility, kinetic solubility, compound solubility, solubility issues at the later stage, solubility issue, low solubility, drug discovery process, stage drug discovery, drug discovery, compound concentration, using special solubility filter plate, drug candidate for success, flask method, serial dilutions of each compound, underestimated toxicity, given drug candidate, assay, compound, special solubility filter plate, saturated solution, solid compound, dilution, flask method with uv, shake flask method

Abstract

Determining compound solubility is an essential tool for the early stages of the drug discovery process, as well as for lead optimization. Low solubility can lead to unpredictable and unreliable results during in vitro testing, thereby increasing the development costs. Solubility issues at the later stages of the drug discovery may lead to poor bioavailability, underestimated toxicity, and other obstacles, lowering the chances of a given drug candidate for success.

Typically, for early-stage drug discovery, the kinetic solubility method is used, as it is fast and well-suited for the HTS format. In this case, solid compounds are first dissolved in DMSO, and then linear serial dilutions of each compound are added to an aqueous buffer and observed for precipitate formation when the compound is not completely soluble. For better precision, the solution can be subjected to high-speed centrifugation or filtration using special solubility filter plates and then the compound concentration is measured in the saturated solution directly by UV or LC-MS/MS using separately built calibration curves. Measurements were performed by the shake-flask method with UV-Vis or LC-MS/MS detection.

Materials

Equipment

- Water purification system Millipore Milli-Q Gradient A10 (Sartorius Arium™ Mini)
- Thermomixer R Block, 1.5 mL (Eppendorf, Germany)
- Matrix Multichannel Electronic Pipette 2-125 µL, 5-250 µL, 15-1250 µL (Thermo Scientific, USA)
- SpectraMax Paradigm™ Reader (Multi-Mode Detection Platform)
- MS/MS detector API 3000 PE with TurbolonSpray Electrospray module (PE Sciex, USA)
- Multi-Well Plate Vacuum Manifold (Pall Corporation, USA)
- Vacuum pump (Millipore, USA)

Material

Phosphate buffered saline, pH 7.4 (Sigma-Aldrich, USA)

 Phosphate buffered saline powder, pH 7.4, for preparing 1 L solutions **Merck MilliporeSigma (Sigma-Aldrich) Catalog #P3813**

Acetonitrile Chromasolv, gradient grade, for HPLC, ≥99.9% (Sigma-Aldrich, USA)

 Acetonitrile **Merck MilliporeSigma (Sigma-Aldrich) Catalog #34851**

DMSO (Sigma-Aldrich, USA)

Costar 96 Well Assay Blocks (Corning, USA)

 Costar 96-Well Microplate, Deep Well, Sterile, V-Bottom, 2 mL; 25/Cs **Corning Catalog #3960**

MultiScreen HTS 96 Well Filter Plates (Millipore)

UV-Star® 96 Well Microplate (Greiner Bio-One)

Multichannel pipettors 1-30 µL, 2-125 µL, 30-850 µL (Thermo Scientific)

Flex-Tubes Microcentrifuge Tubes, 1.5mL (Eppendorf, Germany)

 Eppendorf® Flex-Tubes Microcentrifuge Tubes **Merck MilliporeSigma (Sigma-Aldrich) Catalog #EP022364120**

Troubleshooting

Safety warnings

 Always wear appropriate PPE for this protocol

Refer to Material Safety Data Sheets for additional safety and handling information.

Preparation of auxiliary solutions

2w

1 1 L **PBS:** [M] 0.01 Molarity (M) **Phosphate buffer**

In a bottle for reagents with a cap of 1 L capacity, place:

- contents of 1 L sachet with phosphate buffer,
- 1 L of water and mix thoroughly and filter through a membrane filter with a pore diameter of 0.45 μm .

Note

The shelf life of the solution is 2 weeks when stored at 5 $^{\circ}\text{C}$.

2 100 mL **A solution (AcN:PBS, 50:50, v/v):**

In a bottle for reagents with a cap of 100 mL capacity, place:

- 50 mL of AcN,
- 50 mL of PBS and mix thoroughly.

Note

The shelf life of the solution is 1 month when stored at Room temperature.

3 100 mL **B solution (AcN:PBS:DMSO, 49:49:2, v/v/v):**

In a bottle for reagents with a cap of 100 mL capacity, place:

- 49 mL of AcN,
- 49 mL of PBS,

- 2 mL of DMSO and mix thoroughly.

Note

The shelf life of the solution is 1 month when stored at Room temperature .

4

 100 mL **C solution (AcN:DMSO, 98:2, v/v):**

In a bottle for reagents with a cap of 100 mL capacity, place:

- 98 mL of AcN,
- 2 mL of DMSO and mix thoroughly.

Note

The shelf life of the solution is 3 months when stored at Room temperature .

5

Preparation of 20 mM stock compound

Prepare 20 millimolar (mM) stock solutions of test substances in DMSO. As a rule, 50 μ L of solution is enough.

Sample preparation

2h

6 **Incubation of** 400 micromolar (μ M) **solution**

2h

In Matrix Storage tubes (1.4 mL), add 490 μ L of buffer, followed by 10 μ L of stock solution of the test and control substances. Prepare two incubation mixtures for each substance to ensure reproducibility. Place the tubes in a thermomixer. Set the thermomixer to 850 rpm and incubate for 02:00:00 .

7 **Preparation of Calibration Solutions**

Using Matrix Storage tubes (1.4 mL) with 20 μ L of stock solutions, prepare calibration solutions according to Table 1. Mix the solutions by pipetting 5 times. To prevent evaporation, cover the tubes with strip caps.

	A	B	C	D	E	F	G
Calibration standard/solution (μL)	Concentration (μM)						
	400*	200	100	50	25	10	
<i>A solution</i>	490						
<i>B solution</i>		250	250	250	250	150	
20 mM DMSO stock	10						
400 μ M		250					
200 μ M			250				
100 μ M				250			
50 μ M					250		
25 μ M						100	
10 μ M							

Table 1

*Note: The 400 μ M standard is not used in the measurements.

- For the incubation mixture, add 250 μ L of Solution C (well A11-12) into the tube. See Figure 1 for the arrangement of tubes in the rack.

	1	2	3	4	5	6	7	8	9	10	11	12
A	St 400	St 200	St 100	St 50	St 25	St 10					Inc.1 200	Inc.2 200
B												
C												
D												
E												
F												
G												
H												
	1	2	3	4	5	6	7	8	9	10	11	12

Figure 1

9 Filtration of the Incubation Mixture

- 9.1 Place the Deep Well Plate in the manifold and close the manifold.
- 9.2 Place the filtration plate on top.
- 9.3 Transfer $\text{290 } \mu\text{L}$ of the incubation mixture into the filtration plate, cover with a plastic lid.
- 9.4 Turn on the vacuum pump and gradually adjust the manifold valve to 0.2 atm.
- 9.5 After filtration, close the manifold valve, turn off the vacuum pump, and transfer $\text{250 } \mu\text{L}$ of the filtrate into the tube with Solution C (well A8 in Figure 1).
- 9.6 Mix by pipetting 5 times.

10 Preparation for Measurement

Transfer 200 μ L of the solutions from the tubes (in duplicates) to a UV-Star® plate, following the layout in Figure 2.



Figure 2

11 Insert the Plate into the Reader

- 11.1 Place the plate into the reader for measurement.
- 11.2 On the device, press the "Drawer" button, then insert the plate into the reader.
- 11.3 Close the reader by pressing the "Drawer" button again.
- 11.4 Start the measurement by clicking the "Read" button in the SoftMax Pro software.

11.5 After the measurement, remove the plates and dispose of them properly.

12 Evaluation of Results

12.1 The concentrations of compounds in PBS filtrate are calculated using a dedicated Microsoft Excel calculation script.

12.2 Proper absorbance wavelengths for calculations are selected for each compound manually based on absorbance maximums (absolute absorbance unit values for the minimum and maximum concentration points within the 0 – 3 OD range).

12.3 Each final dataset is visually evaluated by the operator, and goodness of fit (R^2) is calculated for each calibration curve.

12.4 The effective range of this assay is approximately $\text{2 } \mu\text{M}$ - $\text{400 } \mu\text{M}$ and the compounds returning values close to the upper limit of the range may have higher actual solubility (e.g. 5'-deoxy-5-fluorouridine).

Protocol references

1. Thomas O., G. Kazan Quantitative method to determine drug aqueous solubility: optimization and correlation to standard methods / Millipore Corporation Technical Note AN1730EN00
2. Thomas Onofrey, Ph.D. and Greg Kazan MultiScreen® Solubility Filter Plate Performance and correlation of a 96-well high throughput screening method to determine aqueous drug solubility/Millipore Corporation Technical Note AN1731EN00
3. MultiScreen® Solubility Filter Plate Determination of aqueous compound solubility using a 96-well filter plate to remove precipitated solids prior to UV/Vis spectroscopic analysis/Millipore Corporation Technical Note PC2445EN00
4. The MultiScreen Solubility Quantitative Method Protocol: With Data Acquisition and Analysis using Molecular Devices SpectraMax®Plus with SoftMax® Pro Software/Millipore Corporation Technical Note TN1176EN00