Feb 24, 2020

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) real-time RT-PCR E gene 2020

DOI

dx.doi.org/10.17504/protocols.io.bcv9iw96

Judy A Northill¹, Ian M Mackay¹

¹Public Health Virology, Forensic and Scientific Services

Public Health Virology, F... Coronavirus Method De...

Judy A Northill

Public Health Virology, Forensic and Scientific Services

DOI: dx.doi.org/10.17504/protocols.io.bcv9iw96

Protocol Citation: Judy A Northill, Ian M Mackay 2020. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) real-time RT-PCR E gene 2020. protocols.io <u>https://dx.doi.org/10.17504/protocols.io.bcv9iw96</u>

Manuscript citation:

Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020;25(3):2000045. <u>https://www.eurosurveillance.org/content/10.2807/1560-</u> 7917.ES.2020.25.3.2000045

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: February 24, 2020

Last Modified: February 24, 2020

Protocol Integer ID: 33441

Keywords: CoV, coronavirus, Wuhan, Real-time, RT-PCR, PCR, virus, China, pneumonia, seafood market, WSMPV, sarbecovirus, SARS-CoV-2, COVID-19

Abstract

A real-time RT-PCR designed to amplify a portion of the envelope gene of sequences from the *Betacoronavirus* sub-genus *Sarbecovirus*.

The probe and primers were published by Corman *et al.*, and we have slightly modified the protocol, increasing the concentration of the reverse primer, using a different kit and different cycling conditions.

This test has identified clinical positive cases of coronavirus disease 2019 (COVID-19).

Guidelines

- If using a different brand or model of real-time thermocycler, check the concentration of ROX is adequate.
- Method assumes the user is familiar with the thermocycler and software used to run the protocol.

Materials

MATERIALS

SuperScript[™] III Platinum[™] One-Step qRT-PCR Kit Life Technologies Catalog #11732088

STEP MATERIALS

SuperScript[™] III Platinum[™] One-Step qRT-PCR Kit Life Technologies Catalog #11732088

Protocol materials

- X SuperScript[™] III Platinum[™] One-Step qRT-PCR Kit Life Technologies Catalog #11732088
- X SuperScript[™] III Platinum[™] One-Step qRT-PCR Kit Life Technologies Catalog #11732088
- X SuperScript[™] III Platinum[™] One-Step qRT-PCR Kit Life Technologies Catalog #11732088

Oligonucleotides

1

Oligo name	Sequence 5'-3'	Locat ion*
E_Sarbeco_F1	ACAGGTACGTTAATAGTTAATAGCGT	2626 9- 2629 4
E_Sarbeco_R2	ATATTGCAGCAGTACGCACACA	
E_Sarbeco_P1	6FAM-ACACTAGCCATCCTTACTGCGCTTCG- BHQ1	2633 2- 2635 7

*Based on numbering for GenBank accession NC_045512 Wuhan seafood market pneumonia virus isolate Wuhan-Hu-1

Reagents

2

SuperScript[™] III Platinum[™] One-Step qRT-PCR Kit Life Technologies Catalog #11732088

Synthetic controls

3 Synthetic controls are produced using the <u>binary synthetic template oligonucleotide</u> <u>positive control for in-house diagnostic real-time RT-PCR method.</u>

The oligonucleotide sequences required to make controls for this assay are:

Probe control:

```
AAAATAATACGACTCACTATAGGGTGAAGAGAATCCACAAGGAATTGAAACACTAGCCATCC
TTACTGCGCTTCGACAGTGTTCAGCAGGTCCTGTTGAAAA
```

Primer control:

AAAATAATACGACTCACTATAGGGACAGGTACGTTAATAGTTAATAGCGTATGATCTGGCACG GGACCCTCCAATGTGTGCGTACTGCTGCAATATAAAA

Reaction Set-up

- Assay has been designed to be used on both a Rotor-Gene 6000 / Rotor-Gene Q 5plex using 100-place rotor discs and a ABI 7500 Fast real-time machine.
 - Total reaction volume is 20µL.
 - Prepare sufficient for number of reaction plus a 'dead volume' usually 2 extra. Adjust as necessary if using a robotic dispenser.

Reag ent	Volu me (μl) x1	Final reacti on conc entra tion
Nucle ase- Free water	4.39	
E_Sar beco_ F1	0.04	400n M
E_Sar beco_ R2	0.09	900n M
E_Sar beco_ P1	0.04	200n M
2X React ion mix*	10	
Super script III/Pla tinum Taq enzy me mix*	0.4	
ROX refere nce dye (25u M)*	0.04	50nM

ME

*Superscript®III Platinum® One-Step qRT-PCR kit

Dispense 15µl to each reaction well.

Add 5µl of template, extracted RNA, controls or NTC (nuclease-free water). Total reaction volume is 20µl.

Amplification

5 PCR Amplification

1 cycle	40 cycle s
50°C 5 minut es	95°C 3 seco nds
95°C 2 minut es	60°C 30 seco nds*

*Florescence acquisition step

Result analysis

- 6 The definition used for a satisfactory positive result from a real-time fluorogenic PCR should include each of the following:
 - 1. A sigmoidal curve the trace travels horizontally, curves upward, continues in an exponential rise and followed by a curve towards a horizontal plateau phase
 - 2. A suitable level of fluorescence intensity as measured in comparison to a positive control (y-axis)
 - 3. A defined threshold cycle (C_T) value which the fluorescent curve has clearly exceeded (Fig.1 arrow) and which sits early in the log-linear phase and is <40 cycles
 - 4. A flat or non-sigmoidal curve or a curve that crosses the threshold with a C_T value
 >40 cycles is considered a negative result
 - 5. NTCs should not produce a curve.

Figure 1. Examples of satisfactory sigmoidal amplification curve shape when considering an assay's fluorescent signal output. The crossing point or threshold cycle (C_T) is indicated (yellow arrow); it is the value at which fluorescence levels surpass a predefined (usually set during validation, or arbitrary) threshold level as shown in this normalized linear scale depiction. LP-log-linear phase of signal generated during the exponential part of the PCR amplification; TP-a slowing of the amplification and accompanying fluorescence signal marks the transition phase; PP-the plateau phase is reached when there is little or no increase in fluorescent signal despite continued cycling.