Feb 14, 2020 Version 3

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) real-time RT-PCR ORF1ab 2020 (Wuhan-ORF1ab; 2019-nCoV-related test) V.3

DOI

dx.doi.org/10.17504/protocols.io.bchvit66

Judy A Northill¹, Ian M Mackay¹

¹Public Health Virology, Forensic and Scientific Services

Public Health Virology, F...

Coronavirus Method De...

Judy A Northill

Public Health Virology, Forensic and Scientific Services

DOI: dx.doi.org/10.17504/protocols.io.bchvit66

Protocol Citation: Judy A Northill, Ian M Mackay 2020. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) realtime RT-PCR ORF1ab 2020 (Wuhan-ORF1ab; 2019-nCoV-related test). **protocols.io**

https://dx.doi.org/10.17504/protocols.io.bchvit66

License: This is an open access protocol distributed under the terms of the **<u>Creative Commons Attribution License</u>**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: February 13, 2020

Last Modified: February 14, 2020

Protocol Integer ID: 33045

Keywords: CoV, coronavirus, Wuhan, Real-time, RT-PCR, PCR, virus, China, 2019-nCoV. ORF1ab, pneumonia, seafood market, WSMPV, sarbecovirus, SARS-CoV-2, COVID-19

Abstract

- A real-time RT-PCR to specifically detect SARS-CoV-2 betacoronavirus also called nCoV-2019 or Wuhan seafood market pneumonia virus. Based on sequence <u>MN908947</u> made available by Professor Yong-Zhen Zhang, Fudan University, Shanghai, China.
- The target region is within the ORF1ab sequence.

Notes

- 1. Assay is fully optimised (as of 24Jan2020).
- 2. This test has identified a clinical positive case of coronavirus disease (COVID-19)

Guidelines

- If using a different brand or model of real-time thermocycler, check the concentration of ROX is adequate.
- Method assumes the user is familiar with the thermocycler and software used to run the protocol.

Materials

STEP MATERIALS

SuperScript[™] III Platinum[™] One-Step qRT-PCR Kit Life Technologies Catalog #11732088

Protocol materials

SuperScript[™] III Platinum[™] One-Step qRT-PCR Kit Life Technologies Catalog #11732088

X SuperScript[™] III Platinum[™] One-Step qRT-PCR Kit Life Technologies Catalog #11732088

Mix

1 Oligonucleotides

Oligo Name	Sequence 5'-3'	Locat ion base d on NC_0 4551 2*
WuhanORF1ab-F	AATCCACCTGCTCTACAAGATG	5455 -547 6
WuhanORF1ab-R	CATCACCTAACTCACCTACTGTC	5566 -554 4
WuhanORF1ab-P	6FAM-AGCTTCACCAGCCCTTGCTCT- BHQ1	5505 -548 5

*GenBank accession NC_045512 Wuhan seafood market pneumonia virus isolate Wuhan-Hu-1

2 Reagents

SuperScript[™] III Platinum[™] One-Step qRT-PCR Kit Life Technologies Catalog #11732088

3 Synthetic controls

Synthetic controls are produced using the **binary synthetic template oligonucleotide** positive control for in-house diagnostic real-time RT-PCR method.

The oligonucleotide sequences required to make controls for this assay are: Probe control: AAAATAATACGACTCACTATAGGGTGAAGAGAATCCACAAGGAATTGAAAGCTTCACCAGCC CTTGCTCTACAGTGTTCAGCAGGTCCTGTTGAAAA Primer control: AAAATAATACGACTCACTATAGGGAATCCACCTGCTCTACAAGATGATGATCTGGCACGGGA CCCTCCAAGACAGTAGGTGAGTTAGGTGATGAAAA

4 Reaction Set-up

- Assay has been designed to be used on both a Rotor-Gene 6000 / Rotor-Gene Q 5plex using 100-place rotor discs and a ABI 7500 Fast real-time machine.
- Total reaction volume is 20μL.
- Prepare sufficient for number of reaction plus a 'dead volume' usually 2 extra. Adjust as necessary if using a robotic dispenser.

Reagent	Volume (ul) X1	Final reaction concentration
Nuclease free water	4.37	
WuhanORF1ab-F (200uM)	0.07	700nM
WuhanORF1ab-R (200uM)	0.09	900nM
WuhanORF1ab-P (100uM)	0.03	150nM
2 X Reaction mix*	10	1X
Superscript III/Platinum Taq enzyme mix*	0.4	
ROX reference dye (25uM)*	0.04	50nM
TOTAL VOLUME	15	

*Superscript®III Platinum® One-Step qRT-PCR kit

Dispense 15µl to each reaction well.

Add 5µl of template, extracted RNA, controls or NTC (nuclease-free water).

Total reaction volume is 20μ l.

Amplification

5 **PCR amplification**

1 cycle		40 cycles	
50°C	5min	95°C 3 seconds	
95°C	2min	60°C 30 seconds*	

*Florescence acquisition step

Result Analysis

6 The definition used for a satisfactory positive result from a real-time fluorogenic PCR should include each of the following:

- 1. A sigmoidal curve the trace travels horizontally, curves upward, continues in an exponential rise and followed by a curve towards a horizontal plateau phase
- 2. A suitable level of fluorescence intensity as measured in comparison to a positive control (y-axis)
- 3. A defined threshold (C_T) value which the fluorescent curve has clearly exceeded (Fig.1 arrow) and which sits early in the log-linear phase and is <40 cycles
- 4. A flat or non-sigmoidal curve or a curve that crosses the threshold with a C_T value
 >40 cycles is considered a negative result
- 5. NTCs should not produce a curve

Figure 1. Examples of satisfactory sigmoidal amplification curve shape when considering an assay's fluorescent signal output. The crossing point or threshold cycle (C_T) is indicated (yellow arrow); it is the value at which fluorescence levels surpass a predefined (usually set during validation, or arbitrary) threshold level as shown in this normalized linear scale depiction. LP-log-linear phase of signal generated during the exponential part of the PCR amplification; TP-a slowing of the amplification and accompanying fluorescence signal marks the transition phase; PP-the plateau phase is reached when there is little or no increase in fluorescent signal despite continued cycling.