
Jun 11, 2024 Version 1

SCRMshaw: supervised cis-regulatory module prediction for insect
genomes V.1

DOI

dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

Hasiba Asma , Luna Liu , Marc S. Halfon

Department of Biochemsitry; Department of Biomedical Informatics;

Department of Biological Sciences, University at Buffalo-State University of New York

Marc S. Halfon
University at Buffalo-State University of New York

1 2 1,2,3

1 2

3

DOI: dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

Protocol Citation: Hasiba Asma, Luna Liu, Marc S. Halfon 2024. SCRMshaw: supervised cis-regulatory module prediction for

insect genomes. protocols.io https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: May 22, 2024

Last Modified: June 11, 2024

Protocol Integer ID: 101138

Keywords: regulatory genomics; enhancers; insects; Drosophila; cis-regulatory module; genome annotation

Funders Acknowledgements:

USDA

Grant ID: 2019-67013-29354

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 1/33

https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1
https://www.protocols.io/researchers/marc-s-halfon
https://www.protocols.io/researchers/marc-s-halfon
https://www.protocols.io/researchers/marc-s-halfon
https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1
https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

Abstract

As the number of sequenced insect genomes continues to grow, there is a pressing need for rapid and accurate

annotation of their regulatory component. SCRMshaw is a computational tool designed to predict cis-regulatory

modules (CRMs) in the genomes of various insect species (Kantorovitz 2009; Kazemian 2011; Asma and Halfon

2019; Asma 2024).

One of the key advantages of SCRMshaw is its accessibility. It requires minimal resources—just a genome

sequence and training data from known Drosophila CRMs, which are readily available for download. Even users

with modest computational skills can run SCRMshaw on a desktop computer for basic applications, although an

HPC cluster is recommended for optimal results. SCRMshaw can be tailored to specific needs. Users can employ

a single set of training data to predict CRMs associated with a particular gene expression pattern, or utilize

multiple sets to provide a rough regulatory annotation for a newly-sequenced genome.

This protocol provides an update to the protocol in Kazemian and Halfon (2019) and incorporates modifications

introduced in Asma and Halfon (2019) and Asma et al. (2024).

Guidelines

Computational considerations:

The SCRMshaw_HD pipeline can analyze an average-sized insect genome using several training sets in a matter

of hours; we are able to run all but the largest or most fragmented genomes with our full default set of 48 training

sets in under 72 hours. The bulk of the computational time is spent in the SCRMshaw step. To decrease run times,

chromosomes and/or training sets can be split out and run as separate instances on additional sets of 25 nodes, if

available, as a simple parallelization strategy. Storage space increases with genome size, mostly due to the larger

number of kmers that must be stored, and can grow to several TB with larger genomes. However, the majority of

this space can be released upon completion of the pipeline by deleting intermediate and temporary files, using

“cleanup” scripts we have made available. If sufficient temporary storage space is not available, it is advisable to

run the original lightweight SCRMshaw (Kazemian and Halfon, 2019) rather than SCRMshaw_HD, which will keep

storage requirements below 100GB for most genomes.

Safety warnings

If using an HPC cluster, it is essential to work with your system administrator to make sure the necessary

software is correctly installed. Docker is often not available on HPC platforms; see the section “Initializing

Orthologer” for recommendations on running this component.

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 2/33

https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

Before start

Software and Dependencies:

Ensure that the following software is installed :

Python:

Python3

Pybedtools

Statistics

Pandas

Numpy

Biopython (for “extract_unannoatatedScaffolds.py”)

Perl:

Perl

Bioperl

Other:

MACS2

Download - https://pypi.org/project/MACS2/

NCBI Download Utility (optional)

Download - https://www.ncbi.nlm.nih.gov/home/tools/

Optional (for Orthology assignment steps):

Docker

Download - https://www.docker.com/products/docker-desktop/

Orthologer Software

Requirements: Docker on Mac or Linux

Download - https://hub.docker.com/r/ezlabgva/orthologer (ver2.4.3)

Documentation - https://hub.docker.com/r/ezlabgva/orthologer

Optional (for final merging of the SCRMshaw results)

BEDTools (https://github.com/arq5x/bedtools2/releases)

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 3/33

https://pypi.org/project/MACS2
https://www.ncbi.nlm.nih.gov/home/tools
https://www.docker.com/products/docker-desktop
https://hub.docker.com/r/ezlabgva/orthologer
https://hub.docker.com/r/ezlabgva/orthologer
https://github.com/arq5x/bedtools2/releases)
https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

1 Create a Project Directory and subdirectories

“create project directory”

Command

$ mkdir project1

2 Under the project directory create subdirectories for saving input and output files

respectively, for training data, and for scripts

“create subdirectories”

Command

$ mkdir GenomeFiles HD_output TrainingSets Scripts

Figure 1: Sample commands to create project directory

Create Project directory

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 4/33

https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

Note

Note: If using SCRMshaw in a multi-user setting, or if planning to analyze many genomes,
other directory structures might be more practical. For example, the “Scripts” and
“TrainingSets” directories can be placed outside of the “project” directory where they will
be accessible for multiple projects. Should you choose a different directory structure, be
sure to update paths in the code examples below as necessary.

3 From the project directory, clone the SCRMshaw_HD software from

https://github.com/HalfonLab .

“Download SCRMshaw”

Command

$ git clone https://github.com/HalfonLab/SCRMshaw_HD.git

Note

See note above about using a different directory structure for multi-user or multi-project
settings.

4 If necessary, decompress the tar archive (e.g., tar xvf SCRMshaw_HD.tar). This will

create a single “SCRMshaw_HD” directory with the following subdirectories:

bin/
src/
code/
include/
example/

Install SCRMshaw

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 5/33

https://github.com/HalfonLab
https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

5 Navigate to the SCRMshaw directory

“Navigating to the SCRMshaw directory"

Command

$ cd SCRMshaw_HD

6 Run “make.” Detailed information on how to install and run the software is provided in the

“README.txt” file located within the software package.

“Executing the “make” command”

Command

 $ make

7 Obtain up-to-date training data from

https://github.com/HalfonLab/Training_sets.

Find details on how to construct custom training sets in Kazemian and Halfon (2019).

Place training sets into the “TrainingSets” directory.

8 Download the genome files from NCBI Datasets

(https://www.ncbi.nlm.nih.gov/datasets/) and place them in the GenomeFiles directory.

Necessary files are:

Genome sequences (FASTA)

Obtain training set sequences

Download required genome files

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 6/33

https://github.com/HalfonLab/Training_sets.
https://www.ncbi.nlm.nih.gov/datasets/)
https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

Annotation features (GFF)

Protein (FASTA)

We recommend using the RefSeq builds if available.

Note

If planning to run SCRMshaw on multiple genomes, we recommend making subdirectories
for each genome, e.g., project1/GenomeFiles/SpeciesX. In the code examples that follow,
make sure to update paths to reflect the directory structure you create.

Note

Even if not running SCRMshaw on the Drosophila melanogaster genome, the D.
melanogaster protein FASTA file is required for the Orthology step. Obtain this from
https://www.ncbi.nlm.nih.gov/datasets/taxonomy/7227/.

Note

Download files using the NCBI download utility (Software Tools - Download - NCBI).
Find a sample script to facilitate on our GitHub page at:
https://github.com/HalfonLab/UtilityPrograms/blob/master/getGenomes.sh.

Note

The file “assembly_data_report.jsonl” contains metadata about the assembly and release
and store for future reference. Use the NCBI “dataformat” tool to convert this to more
readable formats. Discard other files accompanying the download.

9 Rename the “genomic.gff” and “protein.faa” files to “SpeciesX.gff” and

“SpeciesX_protein.fs”, respectively (where “X” is the name of your species). This avoids

future confusion due to the generic “genome” and “protein” designations, and provides

compatibility for downstream steps.

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 7/33

https://www.ncbi.nlm.nih.gov/datasets/taxonomy/7227/
https://www.ncbi.nlm.nih.gov/home/tools/
https://github.com/HalfonLab/UtilityPrograms/blob/master/getGenomes.sh.
https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

The GenomeFiles directory should now look similar to this:

“Rename the “genomic.gff”

Command

$ mv genomic.gff SpeciesX.gff

“Rename the “protein.faa”

Command

 $ mv protein.faa SpeciesX.fs

Figure 2: Example contents of GenomeFiles directory

Assessing genome files using preflight

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 8/33

https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

10 Assess genome and annotation files for proper content and formatting using our preflight

script, which can be downloaded from

https://github.com/HalfonLab/UtilityPrograms. We recommend placing this into the

“Scripts” directory.

“running preflight”

Command

$ perl ../Scripts/preflight.pl -gff genome.gff -fasta
GCF_xxxxxxxxx.fna

10.1 Preflight validates the formats of these files and produces a comprehensive log file that

highlights any issues along with basic information such as the number of

chromosomes/scaffolds and their sizes, data types present in the annotation (e.g., ‘gene’,

‘exon’, ‘ncRNA’, etc.), and average intergenic distances.

Preflight also provides a sample output of the SCRMshaw-generated ‘gene’ and ‘exon’

files. This feature allows users to identify any discrepancies or errors stemming from the

input files and to reformat these files as needed before running SCRMshaw. Be sure to

check the following:

In the first section, no GFF3 errors are reported

Gene and Exon data appear in the following sections

The ‘FASTA’ section reports “all sequences have proper characters”

The following section reports that “All seqids in GFF are also in FASTA”

If any of these conditions is not met, correct the input files before moving on to run

SCRMshaw, or SCRMshaw will fail.

11 Preflight will also indicate whether there are sequence scaffolds that do not contain any

annotated genes (reported as “seqids not in the GFF file.”) Any such sequence scaffolds

should be removed before passing the genome sequence to the main SCRMshaw

program. Perform this using the “extract_unannotatedScaffolds.py” script (from

Removing unannotated genes

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 9/33

https://github.com/HalfonLab/UtilityPrograms.
https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

https://github.com/HalfonLab/UtilityPrograms) that takes the preflight output file and

FASTA sequence file as input and generates a fasta file, “mappedOnly_GCF_xxxxx.fna”,

that contains only the desired sequences.

“extracting unannotated scaffolds”

Command

$ python ../Scripts/extract_unannotatedScaffolds.py -po
preflight_output_file.txt -fasta GCF_xxxxxxxxx.fna

Note

The extract_unannoatatedScaffolds.py script requires biopython

12

Download the current version of TRF for your computer architecture from

https://tandem.bu.edu/trf/home (e.g., trf409.linux64).

Note

Tandem repeats, as the name indicates, consist of a repeated pattern of one or more
nucleotides that occur directly after each other. An example would be ACACACACAC,
where the dinucleotide “AC” is repeated five times. The occurrence of a long tandem
repeat in the training dataset or the region to be scored significantly skews the distribution
of k-mer counts toward the repeated pattern, which would result in assignment of a “false”
high score to regions with one or more occurrences of the repeated pattern. To avoid this
potential issue, tandem repeats in both the training datasets and the genome to be
searched are masked prior to running SCRMshaw using Tandem Repeat Finder (Benson,
1999). To mask tandem repeats:

Masking Tandem Repeats

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 10/33

https://github.com/HalfonLab/UtilityPrograms)
https://tandem.bu.edu/trf/home
https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

“example download command for TRF”

Command

$ curl -JLO ../Scripts/ https://github.com/Benson-Genomics-
Lab/TRF/releases/download/v4.09.1/trf409.linux64

13 Change the downloaded TRF file to an executable form:

“changing to executable”

Command

$chmod +x ../Scripts/trf409.linux64

14 Run TRF on your FASTA files (e.g., mappedOnly_GCF_xxxxx.fna) using parameters as

shown:

The resulting output file will be named

“mappedOnly_GCF_xxxxx.fna.2.7.7.80.10.50.500.mask”

“running TRF”

Command

$../Scripts/trf409.linux64 mappedOnly_GCF_xxxxx.fna 2 7 7 80 10 50
500 –m –h

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 11/33

https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

Note

Different genomes have different repeat content and character. We are currently
investigating whether to adjust the TRF parameters on a per-genome basis. However,
we have found these parameters to be generally effective for a wide range of genomes.
TRF substitutes the repeated nucleotides with “N” characters that can be fed directly
into SCRMshaw. If using a different tool for masking repeats, be sure that the repeated
nucleotides are replaced by the same number of “N” characters.
If you have constructed custom training sets, make sure to also run TRF on the

positive and negative training sequences, as described in Kazemian and Halfon (2019).

15 SCRMshaw requires the following files and directories:

1. A genome file (e.g., “genome.fa”), a multi-FASTA file including all of the genomic

sequences needing to be scored. This is typically a downloaded genome file that has

been masked for tandem repeats, and is passed to the program using the “--genome"

option.

2. One or more dataset directories each containing two files, “crms.fasta” and

“neg.fasta.” These files are respectively the positive and negative training sequences,

both in FASTA file format. We highly recommend tandem repeat masking of

genome.fa, crms.fasta, and neg.fasta.

3. A text file containing a list of the dataset directories (e.g., “trainingSet.lst”; see below

step 17). This is specified using the “--traindirlst” option.

16 Navigate back to the project directory.

“move back to the project directory”

Command

$ cd ..

Running SCRMshaw

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 12/33

https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

17 Under the project directory, create a list file “trainingSet.lst” that contains the path to the

training datasets you wish to use (e.g., project1/TrainingSets/dataset1/), one line per

dataset. You can create this file using a simple text editor or using the following “echo”

commands (adjust path as necessary):

“creating file for dataset1”

Command

$ echo “~/project1/TrainingSets/dataset1/” >> trainingSet.lst

“creating file for dataset2”

Command

$ echo “~/project1/TrainingSets/dataset2/” >> trainingSet.lst

“creating file for dataset3”

Command

$ echo “~/project1/TrainingSets/dataset3/” >> trainingSet.lst

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 13/33

https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

At the conclusion of these steps, your directory should resemble Figure 3 below.

Note

If using SCRMshaw in a multi-user setting and the “TrainingSets” directory is located
outside the project directory (as discussed in the Note at Step 2) then adjust the paths in
“trainingSet.lst” accordingly (e.g., “~/TrainingSets/dataset1”).

Figure 3: SCRMshaw Training Set Sample

18 Run SCRMshaw by providing the full paths to the genome file, gene annotation file, and

training set list after the --genome, --gff, and --traindirlst flags, respectively (e.g.

GenomeFiles/SpeciesX.gff), and providing appropriate values for --lb and --outdir (see

Note).

“Running SCRMshaw”

Command

$ perl SCRMshaw_HD/code/scrm.pl --thitw 5000 --gff
GenomeFiles/SpeciesX.gff --
genomeGenomeFiles/mappedOnly_GCF_xxxxx.fna.2.7.7.80.10.50.500.mask --
traindirlst trainingSet.lst --imm --

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 14/33

https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

18.1 We recommend that the base directory for --outdir be set to ~/project1/HD_output for

consistency with the examples in this protocol.

Note

SCRMshaw_HD requires running 25 concurrent instances with the “window start”
incremented by 10 for each instance.
For optimal efficiency, we recommend performing this computation on a computing
cluster. Execute each of the 25 instances independently, enabling straightforward
parallelization.
An illustrative script utilizing the Slurm manager is available for download as
"Slurm_script_SCRMshawHD.sh" from GitHub
(https://github.com/HalfonLab/UtilityPrograms/blob/master/Slurm_script_SCRMshaw
HD.sh); this script sets appropriate values for the $myNUM and $SLURM_TASK_DIR
variables in the code example above.
If a different workflow manager, other than Slurm, is employed, ensure the correct
syntax for the respective scheduler and appropriate values for the --lb and --outdir
parameters. File names also need to be generated correctly to prevent any disruptions
to downstream scripts.
This process is analogous to merely adjusting the default shift size parameter from
250 bp to 10 bp and adhering to the fundamental SCRMshaw protocol (as described in
Kazemian and Halfon, 2019), allowing for execution on a single processor. However,
the latter approach would substantially increase the execution time, especially for a
large genome.

Note

To execute traditional SCRMshaw (not the "HD" version), set the --lb option to 0, and
specify an appropriate file name for "--outdir". If using Slurm, remove the sbatch --array
option (e.g. "#SBATCH --array=1-25") from the Slurm script.

19 The output of SCRMshaw for the 25 offset instances will be saved in subdirectories,

such as 'task_offset_0_1', 'task_offset_10_2', 'task_offset_20_3', and so on up to

'task_offset_240_25', as specified by the '--outdir' parameter in the Slurm script. These

directories will be created automatically if they don't already exist. If Slurm is not utilized,

it is crucial to ensure that the output directory and file names adhere to the specified

format (e.g., 'task_offset_0_1' to 'task_offset_240_25') to prevent any downstream

disruptions.

20 The SCRMshaw command line options include:

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 15/33

https://github.com/HalfonLab/UtilityPrograms/blob/master/Slurm_script_SCRMshawHD.sh);
https://github.com/HalfonLab/UtilityPrograms/blob/master/Slurm_script_SCRMshawHD.sh);
https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

20.1 Use the name of scoring method(s) for prediction (“--imm” for IMM, “--hexmcd” for

HexMCD, and “--pac” for PAC): required. Select any individual or combination of

methods to run (e.g. “--imm --pac” to run IMM and PAC). For details about the individual

scoring methods see (Kantorovitz et al. 2009, Kazemian et al. 2011).

20.2 The gene annotation file of the genomic regions to be scored in GFF3 format (e.g., “--gff

SpeciesX.gff”): optional but strongly recommended.

Alternatively, separate “gene” and “exon” files can be used. It is also possible to use

SCRMshaw without providing any annotation, but this will not allow for exclusion of

coding sequences or calculation of “local rank” (see below).

Note

Individual “gene” and “exon” files can be used in lieu of an annotation GFF3 file; one or
both files can be provided.
These should be tab-delimited lists of gene or exon coordinates, respectively, in the
form chromosome (or scaffold), start coordinate, end coordinate, strand (+ or -), gene
ID/exon ID (e.g., gene_name:1).
In the absence of an annotation GFF3 file, running SCRMshaw without a “gene” file will
preclude calculation of local rank and provision of results indicating closest flanking
genes.
Omitting an “exon” file will prevent masking of exons and allow coding regions to be
scored as potential CRMs, which is strongly discouraged.

20.3 The number of top scoring regions to be reported as CRM predictions (--thitw N):

optional, default = 2000.

Note

Adjust the reported number of predictions depending on expectations of how many
CRMs might be recovered, for instance based on how functionally broad or specific the
training CRMs are.
At the moment, we do not have a systematic way of learning this parameter from the
input training sets. We recommend using a generous value, and then if desired working
with a smaller subset of results obtained using the “Generate_top_N_SCRMhits” script
that can be downloaded from

https://github.com/HalfonLab/UtilityPrograms/blob/master/Generate_top_N_SCRMhits.pl

21 The offset parameter --lb: optional, default = 0. The --lb tells the algorithm to ignore the

base pairs at the beginning of a chromosome/scaffold before this point, i.e., to start

creating the analysis windows from this point in the genome. The Slurm script described

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 16/33

https://github.com/HalfonLab/UtilityPrograms/blob/master/Generate_top_N_SCRMhits.pl
https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

above sets --lb from 0 to 240 with a step size of 10 (i.e 10, 20, 30,..., 240) for the 25

instances being run for each training set.

22 Which steps of the SCRMshaw pipeline to run (--step 123): optional, default = 123. Step 1

processes the genome and genome annotation, step 2 processes the training data, and

step 3 scores the genome.

Note

For a given genome, we recommend first running SCRMshaw with a limited number of
training datasets and the “--step” option set to “--step 123.”
This will process the genome and annotation, and ensure that create all of the proper
subdirectories.
Parallel instances of SCRMshaw can then be run with additional training sets and “--
step 23.” To run an additional scoring method for a previously run training set (e.g., if
only “--imm” was run initially and you now want to add “--hexmcd”), only “--step 3” is
necessary.

23 Detailed information on how to run SCRMshaw from the command line and additional

available options can be obtained by the following command: “perl

SCRMshaw_HD/code/scrm.pl” or from the README document accompanying the

SCRMshaw distribution.

An example benchmark data set along with how to run and interpret its results is

provided in the example directory within the software package.

24 The post-processing steps merge the data from the 25 SCRMshaw instances and select

the top-scoring regions as CRM predictions. To run the post-processing steps, download

the following scripts from GitHub and place in the

“Scripts” directory:

24.1 post_processing_complete.sh (https://github.com/HalfonLab/UtilityPrograms)

24.2 Generate_top_N_SCRMhits.pl (https://github.com/HalfonLab/UtilityPrograms)

postProcessingScrmshawPipeline.py

(https://github.com/HalfonLab/post_processing_SCRMshaw_pipeline)

Post-processing

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 17/33

https://github.com/HalfonLab/UtilityPrograms)
https://github.com/HalfonLab/UtilityPrograms)
https://github.com/HalfonLab/post_processing_SCRMshaw_pipeline)
https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

24.3 Execute the shell script post_processing_complete.sh from the project directory. Use the

path to the GFF annotation file for SCRMshaw and enter as a command line argument:

“post-processing”

Command

$./Scripts/post_processing_complete.sh GenomeFiles/SpeciesX.gff

24.4 The post-processing procedure will create the following files:

scrmshawOutput_offset_0to240.bed: this is the concatenated results of the top 5000

results from each of the individual SCRMshaw instances

24.5 scrmshawOutput_peaksCalled_[hexmcd/imm/pac]: BED-formatted files with the MACS-

generated peaks with the results for each training set and SCRMshaw method

24.6 peaks_AllSets.bed: the concatenated final results from the three separate peaks files in

BED format

24.7 log_flankingMoreThanOneGenesFromAllSets.txt: a log file documenting cases of

SCRMshaw predictions where there is more than a single flanking gene either up- or

downstream of the prediction (e.g., where genes overlap or are nested).

Note

Make sure the following dependencies are available for this step:
Pybedtools
Statistics
Pandas
numpy
MACS2

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 18/33

https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

Figure 4: Final output from the post-processing script

Note

This file can also be used as an input for pcrmeval.py (Asma and Halfon, 2019) for
evaluation of individual training sets.

24.8 It is possible to finish your SCRMshaw processing at this step, and use the information

from the peaks_AllSets.bed file for any desired downstream analysis.

However, we recommend continuing with the Orthology Mapping steps below, as it

makes the output more understandable by providing recognizable gene names to

what otherwise would be arbitrary ID numbers.

If you choose to end your SCRMshaw processing here, we recommend you still follow

the “cleanup” procedures in the final section of this protocol, “Cleaning Up.”

Note

The “peaks_AllSets.bed” may have duplicate and/or overlapping predictions, e.g. when the
same or similar sequences are predicted by more than one training set, or more than one
method. This can easily be resolved using BEDTools (Quinlan and Hall, 2010) as described
below in the “Interpreting the Output” section.

25

Note

This step maps genes listed in the SCRMshaw output file to their orthologs in Drosophila
melanogaster using Orthologer (Kuznetsov et al., 2023), a program developed by the
Zdobnov lab to map orthologs. This is helpful, although not necessary, for making use of
SCRMshaw output.

Running Orthologer

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 19/33

https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

Before running Orthologer, create a directory titled Project_OM.

Note

Orthologer is currently distributed as a Docker container. Many HPC environments do not
allow deployment of Docker files. It may be simpler to execute the following steps locally
on a desktop Mac or Linux computer. Alternatively, you may be able to run the Docker
image as a Singularity (Aptainer) image; consult with your HPC system administrator.

“Make Project_OM directory for running Orthologer”

Command

$ mkdir Project_OM

26 Copy the post-processing SCRMshaw results (peaks_AllSets.bed) and the genome

annotation (GFF) files into this directory.

“Copy files to Project_OM directory”

Command

$ cp peaks_AllSets.bed GenomeFiles/SpeciesX.gff Project_OM/

27 Create a subdirectory of Project_OM titled “protein_files”.

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 20/33

https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

“Create protein_files directory”

Command

$ mkdir Project_OM/protein_files

28 Copy the protein FASTA files for the current species as well as for Drosophila

melanogaster into the protein_files directory.

“Copy protein FASTA files”

Command

$ cp GenomeFiles/SpeciesX_protein.fs path/DMEL_protein.fs
Project_OM/protein_files

Note

Check that the file extensions for the protein FASTA files is “.fs”. If necessary, change the
extension.

Figure 5: Starting files needed to run orthology mapping

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 21/33

https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

29 Navigate to the Project_OM directory

“Navigate to the Project_OM directory”

Command

$ cd Project_OM

30 Obtain the Orthologer Docker image (see note above about Docker and HPC platforms).

“Pulling Orthologer from Docker”

Command

$ docker pull ezlabgva/orthologer:v3.0.5

Note

This example shows us using version 3.0.5 of Orthologer. However, you may use the latest
stable version instead. Remember to update the version numbers in subsequent steps if
you use a different version.

31 Set a working environment in directory $(pwd) as user $(id -u):

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 22/33

https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

“Set Orthologer working environment”

Command

$ docker run -u $(id -u) -v $(pwd):/odbwork
ezlabgva/orthologer:v3.0.5 setup_odb.sh

Figure 6: Orthologer starting files after pulling from Docker

32 Create a text file specifying the FASTA files to be used, as follows:

“Create ‘mydata.txt’ file”

Command

$ for x in $(ls files/*.fs); do echo "+$(basename $x .fs) $x"; done >
mydata.txt

33 Import the specified proteomes:

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 23/33

https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

“import proteomes”

Command

$ docker run -u $(id -u) -v $(pwd):/odbwork
ezlabgva/orthologer:v3.0.5 ./orthologer.sh manage -f mydata.txt

34 Run the Orthologer container

“Running Orthologer”

Command

$ docker run -u $(id -u) -v $(pwd):/odbwork
ezlabgva/orthologer:v3.0.5 ./orthologer.sh -t todo/mydata.todo - r all

35

Note

Orthologer creates output files in the Results, Cluster and Rawdata directories. Our
outputs need to be saved into a directory titled “orthologer_output” to use for orthology
mapping. The user should retain three files: “DMEL_protein.fs.maptxt”,
“SpeciesX_protein.fs.maptxt”, and the “mydata.og_map” file:

Cluster/mydata.og_map: this file has the list of all internally mapped IDs
(ortho/paralogs) between Drosophila melanogaster and species X
Rawdata/DMEL_protein.fs.maptxt, Rawdata/SpeciesX_protein.fs.maptxt: these are the
mapping files of internal gene_IDs to IDs in the original protein FASTA files

The remaining output files can be discarded

Saving Orthologer outputs for orthology mapping

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 24/33

https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

Navigate back to the main project directory

“Navigate back to the main project directory”

Command

$ cd ..

36 Create a directory “orthologer_output”

“create “orthologer_output” directory

Command

$ mkdir orthologer_output

37 Copy the desired Orthologer output files to the orthologer_output directory

“copy files”

Command

$ cp Project_OM/Cluster/mydata.og_map
Project_OM/Rawdata/SpeciesX_protein.fs.maptxt
Project_OM/Rawdata/DMEL_protein.fs.maptxt orthologer_output/

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 25/33

https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

38 If desired, at this point the Project_OM directory and its remaining files can be deleted.

“removing the Project_OM directory”

Command

 $ rm -r Project_OM/

Figure 7: Output files from Orthologer required for Orthology Mapping

39

Generate a gene ID ⇔ protein ID mapping file

Note

The previous steps map SpeciesX proteins to their D. melanogaster orthologs, but our
SCRMshaw predictions have associated gene IDs and not protein IDs. We therefore need
an intermediate mapping file to associate protein IDs and gene IDs. This mapping file can
be generated based on information in the SpeciesXannotation GFF file. However, there is
considerable variation in how the necessary information is presented in GFFs compiled by
different research groups. Therefore, you may need to customize your approach
depending on the exact nature of the annotations.

The below line of code will work when the relevant gene ID and protein ID are both listed
for a CDS annotation line, with the correct gene ID given as “gene”.

Mapping DMEL orthologs to SpeciesX SCRMshaw predictions

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 26/33

https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

“Sample code for generating a gene⇔protein mapping file (Using Perl)”

Command

$ perl -F'\t' -ane 'next if $_ =~ /#/; if ($F[2] =~ /CDS/){$F[8] =~
/gene=(.*?);.*protein_id=(.*)/; print "$1\t$2\n";}' speciesX.gff |
sort -u > speciesX_A.map

“Sample code for generating a gene⇔protein mapping file (Using sed)”

Command

$ sed -n '/#/d; /CDS/ {s/.*gene=\([^;]*\);.*protein_id=\
([^;]*\).*/\1\t\2/; p; }' speciesX.gff | sort -u > speciesX_A.map

Note

Because there are often multiple CDS lines for a single gene, we piped the above
command through “sort -u” to remove any duplicate lines. We recommend this step of
removing duplicate lines, either at this step or following final editing of the mapping file,
before running the “OM_mappingFlyOrthologsToSCRMshawPredictions.py” script.

40 Inspect the speciesX_A.map file and check that the first column of this file has the gene

IDs formatted the same as that in column 6 of the SCRMshaw output file, and that the

protein IDs in the second column match those in the Orthologer-generated

“mydata.og_map” file. If necessary, edit these files for appropriate formatting. The

following figures provide an example:

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 27/33

https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

40.1 Looking at this file we can see that protein ID (2nd) column matches the format of the

Orthologer output, but the gene ID (1st) column is formatted slightly differently than

SCRMshaw output (the latter have ‘gene-’ at the beginning of each ID). We therefore edit

the file as follows:

“editing P.argentina_A.map”

Command

$ sed ‘s/^/gene-/’ P.argentina_A.map > P.argentina_Aedited.map

40.2 The resulting file should look like this:

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 28/33

https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

41 Obtain the necessary scripts and files from the Halfon Lab GitHub

“Clone the GitHub repository”

Command

$ git clone https://github.com/HalfonLab/Mapping-D.mel-Orthologs.git

42 Run the script “OM_mappingFlyOrthologsToSCRMshawPredictions.py”.

You will need to supply the following command line options:

–ft: A table of D. melanogaster annotation features (included in the Mapping-D.mel-

Orthologs repository)

–mD: D. melanogaster Orthologer “maptxt” output file (included in the Mapping-

D.mel-Orthologs repository or from your output in the Orthologer step)

–mX: The SpeciesX Orthologer “maptxt” file generated in the Orthologer step

–og: The “mydata.og_map Orthologer output file generated in the Orthologer step

–sp1id: The appropriately edited SpeciesX.map file from step 40

–so: The SCRMshaw final output “peaks_Allsets.bed” file

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 29/33

https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

command title = “Running the final orthology mapping”

Command

 $ python Mapping-D.mel
Orthologs/OM_mappingFlyOrthologsToSCRMshawPredictions.py -ft Mapping-
D.mel
Orthologs/GCF_000001215.4_Release_6_plus_ISO1_MT_feature_table.txt -
mD Mapping-D.mel-Orthologs/DMEL_PROTEIN.fs.maptxt -mX
orthologer_output/SpeciesX_protein.fs.maptxt -og
orthologer_output/mydata.og_map -sp1id SpeciesX_Aedited.map -so
peaks_Allsets.bed

43 The output file will have the same file name as SCRMshaw’s output file with an additional

“SO_” prefix. As noted above, this file may have duplicate and/or overlapping predictions,

e.g. predict the same or similar sequences by more than one training set, or more than

one method. This can be resolved using the “sort” and “merge” commands in BEDTools

(Quinlan and Hall, 2010) as follows:

“BEDTools Sort and Merge”

Command

$ bedtools sort -i SO_peaks_Allsets.bed | bedtools merge -c
4,5,6,7,8,9,10,11,12,13,14,15,16,17,18 -o
max,max,distinct,distinct,distinct,distinct,distinct,distinct,distinct
,distinct,distinctdistinct,distinct,distinct,min

Interpreting the output

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 30/33

https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

Note

The output file is an 18-column tab delimited file as follows:
Chromosome
start
end
Peak amplitude
SCRMshaw score
flanking gene
D. melanogaster ortholog of flanking gene
distance of hit from flanking gene (basepairs)
location of hit relative to flanking gene
local rank
next closest flanking gene
D. melanogaster ortholog of next flanking gene
distance of hit from flanking gene (basepairs)
location of hit relative to flanking gene
local rank
training set
method (hexmcd, imm, pac)
rank

If the orthologous gene is not known, it will be listed as “No_OrthoPara.” Where predictions
were merged, multiple results may be provided in each column, depending on the results
of the merge (e.g., for method, “imm, hexmcd”). Peak amplitude, score, and rank will
contain the best value from among the merged predictions.

Note

This approach was designed to be minimally restrictive in that it does not enforce a one-
to-one ortholog mapping. In cases of likely paralogs, we consider all of the paralogs as a
potential result.

44

Cleaning up

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 31/33

https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

Download the “cleanup_fastaAndScoredirectory_SCRMshawHD.sh” from

(https://github.com/HalfonLab/UtilityPrograms) and place into the “Scripts” directory.

Note

SCRMshaw creates a large number of files when processing the genome and training
data, which contain breakdowns of individual chromosome/scaffold FASTA sequences
(/fasta/chr), details on k-mer frequencies (/fasta/kmers), and
FASTA sequences of each 500 bp window used in scoring (/fasta/windows). For a large
genome, these files can require significant storage space, but for routine applications are
not required once the predicted CRM results have been obtained.
We provide a simple utility shell script,
“cleanup_fastaAndScoredirectory_SCRMshawHD.sh,” that will delete the contents of the
/fasta and /scores directories to free up storage space.

45 From the Project1 directory, run the cleanup script.

“cleanup directories”

Command

$./Scripts/cleanup_fastaAndScoredirectory_SCRMshawHD.sh

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 32/33

https://github.com/HalfonLab/UtilityPrograms)
https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

Protocol references

1. Asma, H., and Halfon, M.S. (2019). Computational enhancer prediction: evaluation and improvements. BMC

Bioinformatics 20, 174.

2. Asma, H., Tieke, E., Deem, K.D., Rahmat, J., Dong, T., Huang, X., Tomoyasu, Y., and Halfon, M.S. (2024).

Regulatory genome annotation of 33 insect species. bioRxiv, 2024.2001.2023.576926.

3. Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27, 573-

580.

4. Kantorovitz, M.R., Kazemian, M., Kinston, S., Miranda-Saavedra, D., Zhu, Q., Robinson, G.E., Gottgens, B.,

Halfon, M.S., and Sinha, S. (2009). Motif-blind, genome-wide discovery of cis-regulatory modules in Drosophila

and mouse. Dev Cell 17, 568-579.

5. Kazemian, M., and Halfon, M.S. (2019). CRM Discovery Beyond Model Insects. Methods Mol Biol 1858, 117-139.

6. Kazemian, M., Zhu, Q., Halfon, M.S., and Sinha, S. (2011). Improved accuracy of supervised CRM discovery with

interpolated Markov models and cross-species comparison. Nucleic Acids Res 39, 9463-9472.

7. Kuznetsov, D., Tegenfeldt, F., Manni, M., Seppey, M., Berkeley, M., Kriventseva, E.V., and Zdobnov, E.M. (2023).

OrthoDB v11: annotation of orthologs in the widest sampling of organismal diversity. Nucleic Acids Res 51, D445-

D451.

8. Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features.

Bioinformatics 26, 841-842

protocols.io | https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1 June 11, 2024 33/33

https://dx.doi.org/10.17504/protocols.io.e6nvw1129lmk/v1

