Sars-CoV2 RNA purification with homemade SPRI beads for RT-qPCR test

Ayelet Rahat1,2, Miriam Adam3,2, Uri Shabi4,5, Moshe Cohen6, Daniel Kitsberg3,2, Malka Nissim-Rafinia1, Hagit Turm3,1, Agnes Klochendler7, Daphna Joseph-Strauss1,2, Israa Sharkia1,2, Matan Lotem1,2, Gavriel Fialkoff1,2, Ronen Sadeh1,2, Alon Chappleboim1,2, Yuval Dor7, Nir Friedman1,2, Dana Wolf7, Naomi Habib3,2

1Silberman Institute of Life Science, Hebrew University of Jerusalem;2Rachel and Selim Benin School of Computer Science, Hebrew University of Jerusalem;3Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem;4Robiotec Ltd.;5SciRobotics Ltd.;6Neotec Bio;7Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School

ABSTRACT

The current SARS-CoV2 epidemic calls for large scale viral tests. The current testing procedure for the presence of virions involves several steps - pharyngeal/nasal swab, cell/viral lysis, RNA extraction, and an rtPCR assay targeting the viral genome and a human gene as an internal sample control. Improvement of any of these steps in terms of cost, processing time, or reagent availability, could result in a significant increase of testing capacity world-wide.

Here, we describe a rapid and efficient home made SPRI-based RNA extraction method from a lysed sample. Our approach can be fully automated, is quick (<30 min for 96 samples) and cheap (<1$ per sample), and was tested successfully on more than 250 clinical samples with approved rt-qPCR detection kits.

ATTACHMENTS

robotic_COVID_SPRI.pdf COVID-19_SPRI_080420.zip
GUIDELINES

Note that different sources of viral samples arrive in different buffers. This protocol was tested on samples derived by a swab into a standard Viral Transport Medium collection tube, and then mixed 1:1 with Zymo RNA/DNA shield for lysis.

This is a robot-compatible protocol. See attached zipped folder containing the robotic script and worktable for running the protocol on an EVO / Evoware platform and a pdf describing the robot configuration and a human-readable protocol. The protocol is designed to be adaptable to any robotic platform with a 96 channel arm and a manipulator arm capable of manipulating the plate containing the magnetic beads.

MATERIALS

<table>
<thead>
<tr>
<th>MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl Sigma Aldrich Catalog #53014</td>
</tr>
<tr>
<td>PEG 8000 Powder (Polyethylene Glycol), 500gm Promega Catalog #V3011</td>
</tr>
<tr>
<td>Trisodium citrate dihydrate Sigma-aldrich Catalog #S1804</td>
</tr>
<tr>
<td>Water, nuclease free Contributed by users</td>
</tr>
<tr>
<td>1M Tris pH 7.5 Sigma</td>
</tr>
<tr>
<td>Sera-Mag SpeedBead Carboxylate-Modified Magnetic Particles (Hydrophobic), 1 mL Ge Healthcare Catalog #65152105050250</td>
</tr>
<tr>
<td>Tween 20 Sigma Catalog #P1379</td>
</tr>
<tr>
<td>Ethanol Contributed by users</td>
</tr>
<tr>
<td>Lithium chloride Sigma Aldrich Catalog #793620</td>
</tr>
<tr>
<td>HCl Contributed by users</td>
</tr>
<tr>
<td>Ethylenediaminetetraacetic acid (EDTA) Sigma Aldrich Catalog #EDS</td>
</tr>
<tr>
<td>Lithium dodecyl sulfate Sigma Aldrich Catalog #L4632</td>
</tr>
<tr>
<td>1M DL-Dithiothreitol solution (DTT) Sigma Aldrich Catalog #646563</td>
</tr>
</tbody>
</table>

https://dx.doi.org/10.17504/protocols.io.beswjefe
1M Tris pH 8.0 Sigma Aldrich Catalog #T2694

Lysis/binding buffer (similar to Invitrogen #A33562):
100mM Tris-HCl, pH 7.5
500mM LiCl
10mM EDTA
1% LiDS (also tested with 0.5% Triton x-100)
5mM DTT

Equipment needed:
Magnet for PCR strips or 96 well plate (DynaMag-96 Side Skirted Magnet #12027 from Invitrogen)

Equipment needed when processing by hand:
PCR strips or 96 well plate (minimum volume 150 µl)
Multichannel pipette (20ul and 200ul)

The robotic platform used for the protocol:
Tecan EVO150
MCA96 arm with disposable tips
RoMa with centric fingers
Inheco robotic shaker

SAFETY WARNINGS

A risk assessment should be made when working with potentially infectious specimen. Be sure that samples were properly handled and deactivated by certified personnel. Consult your local bio-safety staff.

BEFORE START INSTRUCTIONS

- To prepare a large batch of home-made SPRI beads from the Sera-Mag™ Magnetic SpeedBeads follow our protocol - http://dx.doi.org/10.17504/protocols.io.bes2jege
- Take out SPRI beads from 4c storage for 30 minutes to arrive at room temperature
- Prepare fresh 80% EtOH (250 µl / sample)
- Verify you have enough Lysis/binding buffer (equal to the total volume of samples)
1 **Sample dilution**
Start with clinical samples collected in viral transport media and inactivated by dilution in lysis buffer. Add equal volume lysis/binding buffer to samples, e.g. for 28 µl, add 28 µl lysis/binding buffer

Note
The maximal volume in the process is x3.6 the sample volume, so use the maximum amount of sample that still allows efficient robotic pipetting, depending on your setup

2 **Bead Binding**
1. Add x0.8 volume SPRI beads to each diluted sample (e.g. 45 µl beads to 56 µl diluted sample)
2. Mix by pipetting x10 times, avoid aeration during mixing to avoid foaming
3. Incubate 00:10:00 at 25 °C, periodically mix by pipetting
4. Magnetize until solution clears completely (~ 00:05:00) to make sure you do not lose beads
5. Aspirate the supernatant slowly to avoid disturbing the magnetized beads and discard

Note
If beads can be seen in the tips after aspirating the supernatant or if beads are found in the waste consider the following reasons:
1. Insufficient magnetization - Increase magnetization duration. The volume and buffer type affect the required duration.
2. Bead scraping by the tip - Having the tip touch or scrape the beads during movement due to misalignment. A thinner tip can increase tolerance and help avoid this issue.
3. Tip blockage and pressure buildup - If some of the tips press against the bottom of the well it will cause blockage and a buildup of negative pressure inside the tip. Once the tip moves up the pressure will cause a vortex inside the well which can disturb the beads. Have the tip at least 0.2mm above the bottom of the well and aspirate slowly

3 **80% EtOH Wash**
1. Add 120 µL of 80% EtOH
2. Move the plate from one side of the magnet to the other to immerse the beads in the wash solution
3. Wait for 00:00:30
4. Remove the wash solution while the plate is on the magnet without disturbing the beads
5. Repeat 80% EtOH wash (steps 3.1 - 3.4)
6. Perform an extra aspiration of the residual EtOH with a fine tip
7. Remove the plate from the magnet and air dry the beads to remove traces of EtOH (~00:02:30 minutes at 30 °C), until beads are dry by eye inspection. **Avoid overdrying the beads.**

4 **Elute**

1. Add 10mM Tris pH 8 (for 56ul beads 20 µL) at 10 °C - 22 °C
2. Resuspend the beads fully in the elution buffer by pipetting
3. Incubate for 00:02:00 to allow full RNA elution
4. Place the plate on the magnet and wait for the solution to clear (~00:01:00)
5. Keep on magnet, and transfer the supernatant to a new plate without disturbing the beads

Note

To resuspend the beads in the robotic system, we alternate between several steps:
1. Wash the beads from the sides of the well - aspirate the elution liquid from the bottom of the well and dispense on the sides of the well above the z-line of the beads
2. Shaking the plate
3. Mixing by up-down pipetting about 0.5mm above the bottom of the well