

May 19, 2020

Version 1

SARS-CoV-2 Tailed Amplicon Illumina Sequencing V.1

DOI

dx.doi.org/10.17504/protocols.io.bge5jtg6

Daryl Gohl¹

¹University of Minnesota

Coronavirus Method De...

Daryl Gohl

University of Minnesota

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

[Create free account](#)

OPEN ACCESS

DOI: <https://dx.doi.org/10.17504/protocols.io.bge5jtg6>

Protocol Citation: Daryl Gohl 2020. SARS-CoV-2 Tailed Amplicon Illumina Sequencing. [protocols.io](#)
<https://dx.doi.org/10.17504/protocols.io.bge5jtg6>

License: This is an open access protocol distributed under the terms of the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: May 15, 2020

Last Modified: May 19, 2020

Protocol Integer ID: 37053

Keywords: rna for sar, pcr diagnostic assay for sar, n2 ct value, samples with n1, rna, sequencing metric, tiled amplicon, sar, n2 value, amplicon, increased adapter dimer formation, pcr

Abstract

This protocol outlines how to process RNA for SARS-CoV-2 sequencing using tailed primers to generate tiled amplicons using the method described here: <https://www.biorxiv.org/content/10.1101/2020.05.11.088724v1>.

Best results are obtained for samples with N1 and N2 Ct values of <30 (based on the UMGC/MDL implementation of the CDC qRT-PCR diagnostic assay for SARS-CoV-2, see here:

<https://www.biorxiv.org/content/10.1101/2020.04.02.022186v1.full>). For samples with N1 and N2 values between 30 and ~35, coverage and other sequencing metrics may be more variable and increased adapter dimer formation is expected.

Materials

- 1) Fully skirted 96-well plate. (BioRad)
- 2) Semi-skirted 96-well plate (Thermo Scientific)
- 3) Nuclease-free water. (Fisher Scientific)
- 4) Microseal F foil seals. (BioRad)
- 5) Microseal B PCR seals. (BioRad)
- 6) SuperScript IV VILO master mix (Thermo)
- 7) Q5 Hot Start High Fidelity DNA polymerase. (NEB)
- 8) 10 mM dNTPs (NEB)
- 9) nCov-2019 pool 1.1, 1.2, 2.1, 2.2 primers. (IDT) – see Appendix
- 10) Indexing primers. (IDT) – see Appendix
- 11) Rainin Liquidator 96 pipette with p20/p200 tips. (Rainin)
- 12) Rainin single/multichannel pipettes with p20/p200/p1000 tips. (Rainin)
- 13) White Matrix troughs. (Thermo Scientific)
- 14) SequalPrep Normalization Plate Kit, 96-well. (Thermo Scientific)
- 15) AMPure XP beads. (Beckman Coulter)
- 16) Combinatorial Dual Indexing Primers:

For 384 sample barcoding scheme, see "Indexingprimers.xlsx", from:

<https://protoolexchange.researchsquare.com/article/nprot-4831/v1>

- 17) Unique Dual Indexing Primers:

Available from Illumina (Nextera Unique Dual Indexing Primers, catalog number: 20027213, 20027214, 20027215, 20027216.

Troubleshooting

Before start

Tailed primers should be pooled to generate 4 primer pools (1.1, 1.2, 2.1, 2.2) according to the pooling scheme described in **Supplemental Data File 2** here:

<https://www.biorxiv.org/content/10.1101/2020.05.11.088724v1.supplementary-material>.

Set up

10m

- 1 **Clean workspace and pipets by spraying with RNaseZAP or comparable product (such as RNase Away) and wiping down with KimWipes prior to beginning work.**

RNA samples should be stored at -80 °C and thawed on ice.

cDNA synthesis

- 2 Thaw RNA samples on ice then transfer 5 µL of sample into a 96-well Thermo PCR plate.
- 3 Set up the following reverse transcription reaction master mix (multiply below volumes by number of reactions plus desired overage):
 - 11 µL nuclease free water
 - 4 µL SuperScript IV VILO master mix
- 4 Transfer 15 µL of reverse transcription master mix to each sample containing well.
- 5 Seal plate with a "B" seal, mix well by vortexing using a plate vortexer at 1900 rpm for 00:00:10 s, and spin down briefly in a plate centrifuge (00:00:05 s at 2500 rpm).
- 6 Incubate in a thermocycler using the following conditions:
 - 25 °C for 00:10:00
 - 50 °C for 00:10:00
 - 85 °C for 00:05:00

Enrichment PCR

- 7 Transfer 2.5 μ L of cDNA to each of 4 96-well Thermo PCR plates labeled: Project_Name_PCR1_1.1, Project_Name_PCR1_1.2, Project_Name_PCR1_2.1, and Project_Name_PCR1_2.2.
- 8 Set up the following four PCR master mixes, one for each of the four multiplexed primer pools (multiply below volumes by number of reactions plus desired overage):
 - 14.75 μ L nuclease-free water
 - 5 μ L 5x Q5 reaction buffer
 - 0.5 μ L 10mM dNTPs
 - 0.25 μ L Q5 Polymerase
 - 2 μ L primer pool (10 μ M) (Either pool 1.1, 1.2, 2.1, or 2.2)
- 9 Transfer 22.5 μ L of master mix to each well of the appropriate PCR plate.
- 10 Seal plate with a "B" seal, mix well by vortexing using a plate vortexer at 1900 rpm for 00:00:10, and spin down briefly in a plate centrifuge (00:00:05 at 2500 rpm).
- 11 Amplify samples using the following PCR conditions:
 - 98 °C for 00:00:30
 - 35 cycles of:
 - 98 °C for 00:00:15
 - 65 °C for 00:05:00

Indexing PCR

- 12 For each sample, combine 10 μ L of each of the four pools in a single Bio-Rad fully-skirted 96 well plate.
- 13 Seal plate with a "F" seal, mix well by vortexing using a plate vortexer at 1900 rpm for 00:00:10, and spin down in a plate centrifuge (00:00:30 at 2500 rpm).

- 14 In a 96-well Thermo plate, add 2 μ L of each sample to 198 μ L of nuclease free water (1:100 dilution).
- 15 Seal plate with a "F" seal, mix well by vortexing using a plate vortexer at 2500 rpm for 00:00:10, and spin down in a plate centrifuge (00:00:30 at 2500 rpm).
- 16 Transfer 5 μ L of 1:100 diluted PCR 1 sample to a 96-well Thermo PCR plate.
- 17 Transfer 2 μ L of 5 μ M indexing primer mix to the 96-well Thermo PCR plate containing the samples.
- 18 Set up the following PCR master mix (multiply below volumes by number of reactions plus desired overage):
 - 0.7 μ L nuclease-free water
 - 2 μ L 5x Q5 reaction buffer
 - 0.2 μ L 10 mM dNTPs
 - 0.1 μ L Q5 Polymerase
- 19 Transfer 3 μ L of master mix to each well of the appropriate PCR plate.
- 20 Seal plate with a "B" seal, mix well by vortexing using a plate vortexer at 1900 rpm for 00:00:10, and spin down briefly in a plate centrifuge (00:00:05 at 2500 rpm).
- 21 Amplify samples using the following PCR conditions:
 - 98 °C for 00:00:30
 - 35 cycles of:
 - 98 °C for 00:00:20
 - 55 °C for 00:00:15

72 °C for 00:01:00

72 °C for 00:05:00

Normalization

22 Normalize samples using a SequalPrep plate according to manufacturer's instructions.

 [sequalprep_platekit_man.pdf](#)

23 Elute in 20 µL of SequalPrep Elution Buffer.

Pooling

24 Pool 10 µL of each sample in a trough, mix well and transfer material to a 1.5 mL non-stick tube.

25 Purify using AMPureXP beads at a 0.7x ratio. Elute library in 20 µL of EB.

Library QC

26 Perform final QC on pool by determining concentration (PicoGreen or Qubit assay). Prepare 2 nM pool dilution, based on the sample concentration as determined by PicoGreen and fragment size (expected size is ~555 bp).

Sequencing

27 Dilute pooled sample to 8 pM in HT1, following MiSeq loading instructions, spike in 5% 8 pM PhiX, and load in MiSeq 2×250 or 2×300 reagent cartridge.