Apr 03, 2020

SARS-CoV-2 Genome Sequencing Using Long Pooled Amplicons on Illumina Platforms

In 1 collection

DOI

dx.doi.org/10.17504/protocols.io.befyjbpw

John-Sebastian Eden^{1,2}, Eby Sim^{2,3,4}

¹Westmead Institute for Medical Research; ²University of Sydney; ³Centre for Infectious Diseases and Microbiology - Public Health; ⁴NSW Health Pathology - ICPMR

Coronavirus Method De...

John-Sebastian Eden

Westmead Institute for Medical Research, The University of S...

DOI: <u>dx.doi.org/10.17504/protocols.io.befyjbpw</u>

Protocol Citation: John-Sebastian Eden, Eby Sim 2020. SARS-CoV-2 Genome Sequencing Using Long Pooled Amplicons on Illumina Platforms. **protocols.io**.https://dx.doi.org/10.17504/protocols.io.befyjbpw

Manuscript citation:

https://www.biorxiv.org/content/10.1101/2020.03.15.992818v1

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol in our group and have generated more than 300 SARS-CoV-2 genomes

Created: March 31, 2020

Last Modified: April 03, 2020

Protocol Integer ID: 35032

SARS-CoV-2 Genome Sequencing

Keywords: COVID-19, COVID19, Illumina, Genome sequencing, Viral RNA extraction, cDNA synthesis, Nanopore, Nextera XT, Invitrogen, RT-PCR,

Abstract

This protocol describes methods to sequence SARS-CoV-2 with pooled amplicons (14×2.5 kb) using Illumina Platforms.

Attachments

Materials

ITEM	SUPP LIER	CATA LOGU E			
General consumables, chemicals & equipment					
Ethan ol, 200 proof, for mole cular biolo gy (500 mL)	Sigm a- Aldric h	E702 3- 500M L			
Ultra Pure DNas e/RN ase- free distill ed water (500 mL)	lnvitr ogen	10977 015			
β- Merc aptoe thano I (10 mL)	Sigm a- Aldric h	M625 0- 10ML			
0.2 mL strip of 8 tubes , flat cap, natur al (120 pack)	SSIbi o	3245 -00			
DNA LoBin d tubes , 1.5 mL (250 tubes)	Eppe ndorf	0030 1080 51			

Conic al Tube s, 50 mL (500 tubes)	Eppe ndorf	0030 12217 8
PCR plate 96 LoBin d, semi- skirte d (25 plates)	Eppe ndorf	0030 1295 04
PCR Film, self- adhe sive (100 piece s)	Eppe ndorf	0030 12778 1
Simpli Amp Ther mal Cycle r	Appli ed Biosy stems	A248 11
Moth er E- Base devic e	lnvitr ogen	EBM0 3
12 chan nel VOYA GER pipett e (5 – 125 μl)	Integr a	4732
Singl e pipett e charg ing stand	Integr a	4210
Part ' ex	1 - Viral xtractio	RNA n
Quick -RNA viral	Zymo	R103 4

	kit (50 preps)					
	Colle ction tubes (500 pack)	Zymo	C1001 -500			
_	Part 2 - cDNA synthesis					
	Super Script IV VILO mast er mix (50 reacti ons)	Invitr ogen	11756 050			
_	Part am	3 - Gen plificat	ome ion			
	Platin um Super Fi Gree n PCR mast er mix (500 reacti ons)	lnvitr ogen	12359 050			
	Custo m DNA oligos (100 µM)	IDT	~			
	1 Kb Plus DNA ladde r (250 μg)	lnvitr ogen	10787 018			
	E-Gel 48 Agaro se gels, 1%	lnvitr ogen	G800 801			
-	Part 4 an	- PCR p d clean	ooling up			

Qubit 1X dsDN A HS assay kit (500 assay s)	lnvitr ogen	Q332 31
Qubit dsDN A BR Assay Kit (500 assay s)	Invitr ogen	Q328 53
Agen court AMPu re XP (60 mL)	Beck man Coult er	A638 81
Buffe r EB (250	Qiage n	1908 6
mL)		
mL) Part 5 prep se	- DNA I aration quenci	ibrary and ng
mL) Part 5 prep se Nexte ra XT DNA Librar y Prepa ration Kit (96 sampl es)	- DNA I paration quenci quenci na	ibrary and ng FC- 131- 1096

High Sensi tivity D500 0 Scree nTape	Agile nt	5067 -559 2	
High Sensi tivity D500 0 Reag ents	Agile nt	5067 -559 3	
High Sensi tivity D500 0 Ladd er	Agile nt	5067 -559 4	
 iSeq 100 i1 Reag ent (4 pack)	lllumi na	2002 1534	
iSeq 100 Syste m	lllumi na	2002 1532	

SARS-CoV-2 amplicon WGS materials

SARS-CoV-2 amplicon WGS materi...

Safety warnings

Please refer to the Safety Data Sheets (SDS) for health and environmental hazards.

Before start

The basic protocol uses Illumina sequencing but an addendum is added at the end to take sample amplicons and sequence them using Oxford Nanopore Technology.

Viral RNA extraction

1

Note

Here we provide an example low throughput viral RNA extraction protocol; however, any platform that extracts viral or pathogen RNA (or total nucleic acid) should be suitable. We typically use the residual viral extracts from clinical samples following diagnostic RT-PCRs, which include extracts off both Qiagen BioRobot EZ1 and Roche MagnaPure 96 platforms. Please ensure appropriate PPE and containment to avoid exposure to infectious samples, noting that following the addition of the DNA/RNA Shield, the virus will be inactivated.

- 2 Combine $\boxed{_100 \ \mu L \ 2X \ DNA/RNA \ Shield}$ with 100 μ l respiratory sample (sputum, aspirate or swab medium), then mix well by gentle vortexing.
- 3 Add $\underline{\square}$ 400 μ L Viral RNA Buffer to each 200 μ l sample and mix well by gentle vortexing.
- Transfer the mixture into a Zymo-Spin IC column placed in a collection tube. Centrifuge at 31 12000 x g for 00:02:00 to bind viral RNA to matrix.
- 5 Transfer the column into a new collection tube.
- 6 Add $4 500 \,\mu\text{L}$ Viral Wash Buffer to the column, centrifuge at $12.000 \,\text{xg}$ for 00:00:30.
- 7 Transfer the column into a new collection tube.
- 8 Repeat steps 6 & 7:
- 8.1 Add \angle 500 µL Viral Wash Buffer to the column, centrifuge at $\textcircled{12.000 \times g}$ for $\textcircled{12.000 \times g}$.

A

- 8.2 Transfer the column into a new collection tube.
- 9 Add ▲ 500 μL Ethanol (95-100%) to the column and centrifuge at ⊕ 12.000 x g for
 () 00:02:00 to ensure complete removal of the wash buffer.
- 10 Transfer the column into a clean elution tube (2 ml Eppendorf PCR clean, DNA LoBind tube).
- 12 The eluted viral RNA can be used immediately or stored frozen at $[-80 \circ C]$.

cDNA synthesis

13

Note

cDNA is prepared from viral RNA using SuperScript IV VILO Master Mix, which combines both random and oligo-dT priming for first strand synthesis. The oligo-dT priming is essential as the reverse primer for the final amplicon sits close to the viral poly-A tail in the 3' UTR. When using individual components to set up cDNA synthesis instead of the VILO mastermix, use the recommended protocol for a random hexamer primed reaction but supplement the reaction with oligo-dT so the final random hexamer/oligo-dT ratio is 3:1.

14 Setup the following reaction mix for each sample and a no template control (NTC):

REAG ENT	VOLU ME (μl)
Super Script IV VILO Mast erMix (5X)	5

A

A

Ш

Nucle ase free water	15
Viral RNA	5
TOTA L	25

15 Incubate the reaction as follows:

	STEP	TEM P (°C)	TIME (mm: ss)
	Primi ng	25	10:00
	Exten sion	50	20:00
	Denat ure RT	85	05:00
_	Hold	4	00

16 Keep the cDNA 😮 On ice if being used immediately or store frozen at 📳 -20 °C .

Genome Amplification

Note Next we t	ake the	cDNA pr	epared	from	viral RN	IA and	l ampli	ify 14 i	regions	s (~2.5	5kb ea	ch) t
tile acros	s the vir The gen	al genon eral app	ne. The roach is 7,500	PCRs s demo 10,000	are per onstrat	ed by 1	the fol	arallel lowing 20,000	and is scher	NOT a natic: 25,000	27,500	29,903
Wuhan-Hu-1												
Sot A	A1	B1 A2	B2	A3	B3	.4	A5	B5	A6	B6	_A7	7
Set A												
Set A												
Set A												

18 The amplicon primers are as follows:

	PCR	PRIMER	SEQUENCE (5' - 3')	LENG TH (nt)	
	۸1	SARS2_A1F_31	ACCAACCAACTTTCGATCTCTTGT	2562	
	AI	SARS2_A1R_2569	GCTTCAACAGCTTCACTAGTAGGT	2302	
	۸۵	SARS2_A2F_4295	ACAGTGCTTAAAAAGTGTAAAAGTGCC	2570	
	AZ	SARS2_A2R_6847	ACAGTATTCTTTGCTATAGTAGTCGGC	23/9	
	۸۵	SARS2_A3F_8596	ACTTGTGTTCCTTTTTGTTGCTGC	2470	
	AS	SARS2_A3R_11049	GAACAAAGACCATTGAGTACTCTGGA	2479	
	A 4	SARS2_A4F_12711	TACGACAGATGTCTTGTGCTGC	2526	
A4		SARS2_A4R_15225	TAACATGTTGTGCCAACCACCA	2550	
	٨٥	SARS2_A5F_16847	ACTATGGTGATGCTGTTGTTTACCG	2422	
– A5		SARS2_A5R_19254	ACCAGGCAAGTTAAGGTTAGATAGC	2432	
	46	SARS2_A6F_21358	ACAAATCCAATTCAGTTGTCTTCCTATTC	2400	
	AO	SARS2_A6R_23823	TGTGTACAAAAACTGCCATATTGCA	2490	
- A7	۸ 7	SARS2_A7F_25602	ACTAGCACTCTCCAAGGGTGTT	0571	
	Α/	SARS2_A7R_28146	AGGTTCCTGGCAATTAATTGTAAAAGG	2571	
	D1	SARS2_B1F_1876	ATCAGAGGCTGCTCGTGTTGTA	2575	
	Ы	SARS2_B1R_4429	AGTTTCCACACAGACAGGCATT	2575	
	D 2	SARS2_B2F_6287	TGGTGTATACGTTGTCTTTGGAGC	2565	
	DΖ	SARS2_B2R_8828	CACTTCTCTTGTTATGACTGCAGC	2505	
	D 2	SARS2_B3F_10363	TGTTCGCATTCAACCAGGACAG	2440	
	53	SARS2_B3R_12780	CCTACCTCCCTTTGTTGTGTTGT	2440	
	D /	SARS2_B4F_14546	AGGAATTACTTGTGTATGCTGCTGA	2607	
	D4	SARS2_B4R_17131	ACACTATGCGAGCAGAAGGGTA	2007	
	DE	SARS2_B5F_18897	TGTTAAGCGTGTTGACTGGACT	2550	
	D0	SARS2_B5R_21428	TGACCTTCTTTTAAAGACATAACAGCAG	2009	
	P6	SARS2_B6F_23123	CCAGCAACTGTTTGTGGACCTA	2551	
	DU	SARS2_B6R_25647	AGGTGTGAGTAAACTGTTACAAACAAC	2001	
	D7	SARS2_B7F_27447	TCACTACCAAGAGTGTGTTAGAGGT	2420	
	D/	SARS2_B7R_29837	TTCTCCTAAGAAGCTATTAAAATCACATGG	2420	

19 Prepare the primers for each amplicon set by combining

 \underline{A} 4.5 μL forward primer (100 $\mu M)$, \underline{A} 4.5 μL reverse primer (100 $\mu M)$ and

 $rac{1}{4}$ 171 µL nuclease free water into clean PCR strips, as below:

R

20 One standard RT-PCR is shown below, but each sample requires 14 reactions in total, each containing the different amplicon primers A1-A7 & B1-B7.

REAG ENT	VOLU ME (μl)
Platin um Super Fi Gree n Mast ermix (2X)	10
Nucle ase free water	6.5
Prime r pool (5 μΜ)	2
Viral cDNA	1.5
TOTA L	20

21 Setup the following reaction mix for each sample and the no template control (NTC) according to requirements (one sample has 14.5 reactions, 14 primers + 0.5 for pipetting error):

Ø

DEACENT	VOLUME (μl), s=samples			
	S=1	S=3	S=6	S=12
Platinum SuperFi Green Mastermix (2X)	145	435	870	1740
Nuclease free water	94.25	282.75	565.5	1131

22 Dispense $\boxed{16.5 \, \mu L \, reaction \, mix}$ into each well as required, a suggested plate setup is provided below for a 6 sample plate:

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	NTC	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	NTC
	1	2	3	4	5	6	7	8	9	10	11	12
А	A1	A1	A1	A1	A1	A1	B1	B1	B1	B1	B1	B1
В	A2	A2	A2	A2	A2	A2	B2	B2	B2	B2	B2	B2
С	A3	A3	A3	A3	A3	A3	B3	B3	B3	B3	B3	B3
D	A4	A4	A4	A4	A4	A4	B4	B4	B4	B4	B4	B4
Е	A5	A5	A5	A5	A5	A5	B5	B5	B5	B5	B5	B5
F	A6	A6	A6	A6	A6	A6	B6	B6	B6	B6	B6	B6
G	A7	A7	A7	A7	A7	A7	B7	B7	B7	B7	B7	B7
Н	Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty	Empty
	Set A primers							Set B p	primers			

- 23 Using a 8-channel multipipettor, add $\underline{\square} 2 \mu L$ of the diluted and premixed primer sets into each well according to the plate layout.
- 24 Using a 8-channel multipipettor, add $\boxed{\ }$ 1.5 μ L viral cDNA into each well according to the plate layout.
- 25 Seal the plate, and centrifuge for $\bigcirc 00:00:30$ in a plate spinner.

26 Incubate the reaction as follows:

STEP	TEM P (°C)	TIME (mm: ss)	CYCL ES
Hot start	98	02:00	1X
Denat uratio n	98	00:15	40X
Anne aling	65	00:30	

Exten sion	72	02:00	
Final exten sion	72	05:00	1X
Hold	4	00	

27 Analyse Δ 5 μL each RT-PCR reaction on a 1% agarose gel with DNA staining dye. When using Invitrogen E-Gel 48 Agarose precast gels, preload each well with 10 μl of EB buffer. All bands are expected to be ~2.5kb, so run with an appropriate DNA ladder. To aid in pooling visualisation, it is preferable to run all set A and B reactions for one sample on the same row.

PCR pooling and cleanup

28 An example gel is provided below for two different samples:

	A1	A2	A3	A4	A5	A6	A7	B1	B2	B3	B4	B5	B6	B7	Amplicon
Sample 1			-	-	1	-	-	-	-	-	-	-	-	-	
	3ul	3ul	3ul	3ul	3ul	3ul	3ul	3ul	3ul	3ul	3ul	3ul	3ul	3ul	Volume in pool
	A1	A2	A3	A4	A5	A6	A7	B1	B2	B3	B4	B5	B6	B7	Amplicon
Sample 2	-	1	Y IN	-		1	3	-		-	-	1	-	4	
	2ul	2ul	2ul	2ul	10ul	6ul	2ul	2ul	14ul	2ul	2ul	2ul	2ul	6ul	Volume in pool

- Pool the individual amplicons for each sample into a single well of a clean plate or PCR strip. The aim here is to roughly balance the amount of DNA from each amplicon to provide even coverage across the genome. Target the final volume in the pool to be ~
 40 µL (i.e. 3 µL for all 14 amplicons when yield is even).
- 30 Adjust the **final volume** of the pooled PCR product to 450μ L by aliquoting when exceeding or adding an appropriate volume of clean EB buffer when less.

A

Má

31	Add 40μ L room temperature AMPure XP beads (0.8X bead ratio). Gently pipette the entire volume up and down 15 times to mix thoroughly.	D.
32	Incubate at Room temperature for 😒 00:10:00 .	
33	Place the plate/tubes onto the magnetic stand for at least 00:02:00, until the solution appears clear. Do not remove from magnetic stand during washing steps, and take care to not disturb beads.	
34	Remove and discard the supernatant from each well by pipetting.	
35	Add $\boxed{4}$ 200 µL freshly prepared 80% EtOH to each well without disturbing the beads.	Ċ.
36	Incubate at Room temperature for 😒 00:00:30 .	
37	Remove and discard the supernatant from each well by pipetting.	
38	Repeat steps 35 to 37 for a total of two EtOH washes:	
38.1	Add \blacksquare 200 µL freshly prepared 80% EtOH to each well without disturbing the beads.	Ċ.
38.2	Incubate at Room temperature for 😒 00:00:30	
38.3	Remove and discard the supernatant from each well by pipetting.	
39	Allow the beads to air dry for 👀 00:05:00 to 👀 00:15:00. Visually inspect wells to ensure any small droplets are completely removed by pipetting or evaporation.	
40	Remove the plate/tubes from the magnetic stand.	

41 Resuspend the dried bead pellet with 40μ L EB buffer.

- 42 Gently pipette the entire volume up and down 15 times to mix thoroughly.
- Place the plate/tubes onto the magnetic stand at room temperature for at least
 00:02:00 , until the solution appears clear.
- 44 Transfer the cleared supernatant containing the purified DNA into a suitable plate, strip or tube. Use immediately or store frozen at 2 -20 °C.
- 45 Quantify all purified DNA using the Qubit dsDNA broad range assay.
- 46 For any samples >10ng/μl, roughly dilute using EB buffer so the final concentration is between [M] 1 nanogram per microliter (ng/μL) to
 [M] 10 nanogram per microliter (ng/μL).
- 47 Re-quantify all purified and adjusted DNA using the Qubit dsDNA high sensitivity assay.
- 48 Dilute to IMJ 0.2 nanogram per microliter (ng/ μ L) using EB buffer (ensure at least $\stackrel{\scriptstyle -}{=} 20 \ \mu$ L total volume) and proceed to library prep.

DNA library preparation and sequencing

49

Note

The following protocol follows the Illumina Nextera XT DNA library prep kit except for two important changes: i) all reaction volumes are halved to save on reagents and ii) that following the clean up after library amplification, the libraries are manually normalised rather than with the provided normalisation beads.

m

A

- 50
 Combine ▲ 5 μL Tagment DNA Buffer (TD) and
 ▲

 ▲ 2.5 μL pooled, diluted (0.2 ng/μl) amplicons for each sample into a PCR plate or strip.
 ♦
- 51 Mix well by pipetting 10 times.
- 52 Add <u>Δ</u> 2.5 μL Amplicon Tagment Mix (ATM) to each well on top of the TD/DNA mix.
- 53 Mix well by pipetting 10 times. Seal and briefly centrifuge.
- 54 Incubate the reaction mix as follows:

STEP	TEM P (°C)	TIME (mm: ss)
 Tagm entati on	55	05:00
Hold	10	00

- 55 Following tagmentation, immediately remove the reaction from the thermocycler and add $\Delta 2.5 \,\mu$ L Neutralize Tagment Buffer (NT) to stop the reaction.
- 56 Mix well by pipetting 10 times. Seal and briefly centrifuge.
- 57 Incubate at & Room temperature for 😒 00:05:00 .
- 58 Add indices and Nextera PCR Master Mix (NPM) to the neutralised tagmentation reaction for each sample as below:

REAG ENT	VOLU ME (µl)
Neutr alised tagm entati on	12.5

X

de la

X

A

X

reacti on		
i7 adapt er	2.5	
i5 adapt er	2.5	
Nexte ra PCR Mast er Mix	7.5	
TOTA L	25	

59 Incubate the reaction as follows:

STEP	TEM P (°C)	TIME (mm: ss)	CYCL ES
Hot start	72	03:00	1X
Initial denat ure	95	00:30	1X
Denat uratio n	95	00:10	
Anne aling	55	00:30	12X
Exten sion	72	00:30	
Final exten sion	72	05:00	1X
Hold	10	00	

60 Add Δ 15 μL room temperature AMPure XP beads (0.6X bead ratio) to the 25 μl of amplified libraries. Gently pipette the entire volume up and down 15 times to mix thoroughly.

61 Incubate at & Room temperature for 😒 00:10:00 .

A

62	Place the plate/tubes onto the magnetic stand for at least 00:02:00, until the solution appears clear. Do not remove from magnetic stand during washing steps, and take care to not disturb beads.	
63	Remove and discard the supernatant from each well by pipetting.	
64	Add $\underline{\square}$ 200 µL freshly prepared 80% EtOH to each well without disturbing the beads.	a
65	Incubate at Room temperature for 00:00:30	
66	Remove and discard the supernatant from each well by pipetting.	
67	Repeat steps 64 to 66 for a total of two EtOH washes:	
67.1	Add $\boxed{-4}$ 200 µL freshly prepared 80% EtOH to each well without disturbing the beads.	Ø
67.2	Incubate at Room temperature for 00:00:30	
67.3	Remove and discard the supernatant from each well by pipetting.	
68	Allow the beads to air dry for 😢 00:05:00 to 😢 00:15:00. Visually inspect wells to ensure any small droplets are completely removed by pipetting or evaporation.	
69	Remove the plate/tubes from the magnetic stand.	
70	Resuspend the dried bead pellet with \square 22.5 µL EB buffer .	Ø
71	Gently pipette the entire volume up and down 15 times to mix thoroughly.	X

- Place the plate/tubes onto the magnetic stand at room temperature for at least
 00:02:00 , until the solution appears clear.
- 73 Transfer $_$ 20 µL cleared supernatant (containing the purified DNA) into a suitable plate, strip or tube. Use immediately or store frozen at $_$ -20 °C.
- 74 Quantify all purified DNA using the Qubit dsDNA high sensitivity assay.
- 75 Pool the individual libraries equally in DNA amount based on the Qubit values. Here, we assume the libraries will have similar fragment lengths and distributions.
- 76 Quantify the final pool of libraries using the Qubit dsDNA high sensitivity assay.
- Analyse Δ 2 μL final pool of libraries with Agilent High Sensitivity D5000 Screen Tape
 ensuring the whole fragment peak is captured.
- 78 Scale the calculated molarity from the Tapestation to the Qubit DNA concentration using the following formula:

Final molarity = (Tapestation DNA molarity) x (Qubit DNA conc / Tapestation DNA conc)

- Dilute the final pooled libraries down to [M] 1 nanomolar (nM) (at least 50µl) using EB buffer, and add PhiX sequencing control if required (we normally don't).
- 80 Combine $\boxed{\square}$ 20 μ L of 1nM library pool and $\boxed{\square}$ 80 μ L of EB buffer to dilute the final pool of libraries to [M] 0.2 nanomolar (nM) for loading.
- 81 Load $\boxed{4}$ 20 μ L of 0.2nM library pool into a defrosted Illumina iSeq cartridge with flow cell, and sequence with at least 75 nt paired end sequencing.

Note

Assuming even pooling, each run can comfortably include 12-18 SARS-CoV-2 genome libraries with >1000x coverage for consensus calling.

m

M

82 Finally, assemble your viruses and upload them onto <u>www.gisaid.org</u>. Some more details on basic bioinformatic workflow will be provided soon.

Addendum: Sequencing pooled amplicons with Oxford Nanopore Rapid Barcoding kit (SQK-RBK004)

83		
	Note	
	Due to the larger amplicon size generated from this protocol, the application of Nanopore sequencing using the Rapid Barcoding kit was tested. The input for this workflow are four individual pooled samples that have been cleaned and quantified. The output of this process is a "pseudomolecule" with the variant bases of sequenced sample relative to the genome of MN908947.3	
84	Perform Flow cell QC as per Oxford Nanopore's instructions prior to starting library preparation.	
85	For each sample, combine between 100-200 fmol of pooled amplicons with \blacksquare 2.5 μL fragmentation mix \bullet	Ø
86	Adjust the final volume for each tube to $\boxed{\square}$ 10 μ L using Nuclease free water. Gently flick to mix and spin down.	Ø
87	Incubate tubes at 30 °C for 00:01:00 and then at 80 °C for 00:01:00 in a thermocycler. Place tubes On ice to cool.	
88	Pool all samples into a 1.5 ml LoBind tube. Gently flick to mix and spin down.	Ø.
89	Aspirate and dispense $\boxed{10 \ \mu L}$ of pooled RBK004 libraries into a different 1.5 ml LoBind tube and add $\boxed{1 \ \mu L}$ RAP. Gently flick to mix and spin down.	ß
90	Incubate the tube at Room temperature for 😒 00:05:00 .	

91 Store the prepared library **Constant** On ice until required.

- 92 Perform priming and loading the Spot ON Flow Cell as per Oxford Nanopore's instructions.
- 93 Perform sequencing for up to $\bigcirc 02:00:00$ or until enough data is obtained.
- 94 Once sequencing run is completed, perform base calling, demultiplexing and adaptor trimming using Guppy.
- 95 Filter each demultiplexed read set using NanoFilt (<u>https://github.com/wdecoster/nanofilt</u>) to keep reads with a minimum quality of 10 and a maximum length of 2,700 bases.
- 96 Map each filtered read set to onto the reference genome (accession: MN908947.3) separately using Minimap2 (<u>https://github.com/lh3/minimap2</u>) and convert the resulting mapping file into a sorted .bam file using SAMtools (<u>https://github.com/samtools/samtools</u>).
- 97 Visualise and inspect the mapping profile over the reference genome.

Note

N.B. Expect no/low coverage (< 10 x coverage) in some bases in 5' and 3' ends of the reference genome (approximately the first 40 bases and the last 50 bases of the reference genome).

98 Perform variant calling using medaka_variant (https://github.com/nanoporetech/medaka).

Note

Ensure that you select the correct medaka model based on your Nanopore sequencing platform. In addition, variants with a QUAL score of less than 30 should be interrogated before generating a consensus pseudomolecule.

99 Generate consensus sequence from the resulting .vcf file using BCFtools (<u>https://samtools.github.io/bcftools/</u>).