RNAPath Target Identification via Fluorescent Hybridization

Devin Willis

1Scooter Willis

dx.doi.org/10.17504/protocols.io.bk37kyrn

KEYWORDS
Molecular Instruments, COVID, Microscopy, Hybridization, Fluorescence, RNA

LICENSE
This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

CREATED
Sep 08, 2020

LAST MODIFIED
Sep 08, 2020

PROTOCOL INTEGER ID
41823

Citation: Devin Willis (09/08/2020). RNAPath Target Identification via Fluorescent Hybridization. https://dx.doi.org/10.17504/protocols.io.bk37kyrn

This is an open access protocol distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
BEFORE STARTING

Ensure you have cleaned the workspace with an appropriate RNAse away solution to prevent RNA degradation.

Sample Preparation

1. Suspend RNA pellet in 2 µl TE Buffer
 - TE Buffer Thermo
 - Fisher Catalog #12090015

Hybridization

2. Add 2 µl Molecular Instruments COVID Probe Set to the RNA suspension
 - Molecular Instruments HCR COVID Probe Set

3. Place Molecular Instruments Alexa Flour 488 B1 HCR Amplifier in 90 °C for 00:02:00

4. Remove Molecular Instruments Alexa Flour 488 B1 HCR Amplifiers and place at Room temperature for 00:30:00

5. Add 2 µl of each Molecular Instruments Alexa Flour 488 B1 HCR Amplifier H1 and H2 to the RNA suspension

6. Dilute 100 µl of 20x SSC Buffer to 5x SSC Buffer
 - SSC Buffer, 20X,
 - Promega Catalog #V4261

Citation: Devin Willis (09/08/2020). RNAPath Target Identification via Fluorescent Hybridization. https://dx.doi.org/10.17504/protocols.io.bk37kyrn

This is an open access protocol distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
7 Add 4 µl of 5x SSC Buffer to the RNA Suspension

8 Incubate at 37 °C for 12:00:00

Imaging

9 Remove sample from incubation and pipette 1 µl onto a glass slide with a coverslip

10 Image slide under a fluorescent microscope with filter cubes for FITC or Alexa Flour 488