model = tf.keras.Sequential([tf.keras.layers.Input(shape=(X_train.shape[1],1)), tf.keras.layers.Conv1D(64, 3, activation="relu"), tf.keras.layers.MaxPooling1D(2), tf.keras.layers.Conv1D(128, 3, activation="relu"), tf.keras.layers.MaxPooling1D(2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation="relu"), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(1, activation="sigmoid")])