RNA Isolation from Plant Tissue

Marc T. J. Johnson¹, Eric J. Carpenter², Zhijian Tian³, Richard Bruskiewich⁴, Jason N. Burris⁵, Charlotte T. Carrigan⁶, Mark W. Chase⁷, Neil D. Clarke⁸, Sarah Covshoff⁹, Claude W. dePamphilis¹⁰, Patrick P. Edger¹¹, Falcia Goh¹², Sean Graham¹², Stephan Greiner¹³, Julian M. Hibberd⁹, Ingrid Jordon-Thaned¹⁴, Toni M. Kutch¹⁵, James Leebens-Mack⁶, Michael Melkonian¹⁶, Nicholas Miles¹⁴, Henrietta Myburg¹⁷, Jordan Patterson¹⁷, J. Chris Pires¹¹, Paula Ralph¹⁰, Megan Rolf¹⁵, Rowan F. Sage¹⁸, Douglas Soltis¹⁰, Pamela Soltis¹⁰, Dennis Stevenson¹¹, C. Neal Stewart Jr¹⁵, Barbara Surek¹⁶, Christina J. M. Thomsen¹, Juan Carlos Villarreal²², Xiaolei Wu³, Yong Zhang³, Michael K. Deyholos², Gane Ka-Shu Wong²³

¹Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada;
²Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada;
³BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China;
⁴International Rice Research Institute, Metro Manila, Philippines;
⁵Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, United States of America;
⁶Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America;
⁷Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom;
⁸Genome Institute of Singapore, Singapore, Singapore;
⁹Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom;
¹⁰Department of Biology and Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America;
¹¹Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America;
¹²Department of Botany and UBC Botanical Garden, University of British Columbia, Vancouver, British Columbia, Canada;
¹³Max Planck Institute for Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, Potsdam-Golm, Germany;
¹⁴Department of Biology, University of Florida, Gainesville, Florida, United States of America, Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America;
¹⁵Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America;
¹⁶Department of Botany, Cologne Biocenter, University of Cologne, Cologne, Germany;
¹⁷Department of Plant Biology, North Carolina State University, Raleigh, North Carolina, United States of America;
¹⁸Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada;
¹⁹Department of Biology, University of Florida, Gainesville, Florida, United States of America;
²⁰Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America;
²¹New York Botanical Garden, Bronx, New York, United States of America;
²²Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, United States of America;
²³Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, China, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada

Works for me dx.doi.org/10.17504/protocols.io.439gyr6

GigaScience Press

Eric Carpenter

This is an open access protocol distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
ABSTRACT

Methods for RNA isolation

These methods were originally included in Appendix S1 of "Evaluating Methods for Isolating Total RNA and Predicting the Success of Sequencing Phylogenetically Diverse Plant Transcripts" Marc T. J. Johnson et al. PLOS ONE, November 21, 2012. https://doi.org/10.1371/journal.pone.0050226

Many of the protocols share elements or combine components from several methods. For each method, we describe the reagents and procedures used, and identify the researchers or institute that implemented the protocol.

Due to the potential for contamination and degradation by RNase enzymes, as well as health concerns in handling some substances and chemicals, best practices in aseptic wet lab techniques must be practiced at all times during RNA isolation. Chief among these is the critical need to avoid contamination of samples by using extreme care when moving liquids and opening and closing tubes to avoid aerosols. Because of the risk of degradation by RNase enzymes, it is essential to use sterile RNase-free equipment, disposable plastics and solutions. RNase degradation and contamination can be avoided by keeping samples constantly frozen at low temperature (≤ -80 °C) prior to adding buffers that denature or immobilize RNase. Treating equipment with RNase denaturants (e.g. RNase Zap, Ambion, Austin, TX) and solutions with diethylpyrocarbonate (DEPC) can also prevent contamination and/or degradation of samples, but it can have some negative effects on samples. 1 Many additional helpful tips for successful RNA isolation are available in Sambrook and Russell 1 and in Appendix A of Qiagen’s RNeasy Mini Handbook downloadable from www.qiagen.com.

SAFETY WARNINGS

Please see SDS (Safety Data Sheet) for hazards and safety warnings.

ABSTRACT

This is an open access protocol distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Methods for RNA isolation

These methods were originally included in Appendix S1 of “Evaluating Methods for Isolating Total RNA and Predicting the Success of Sequencing Phylogenetically Diverse Plant Transcriptomes” Marc T. J. Johnson et al. PLOS ONE, November 21, 2012. https://doi.org/10.1371/journal.pone.0050226

Many of the protocols share elements or combine components from several methods. For each method, we describe the reagents and procedures used, and identify the researchers or institute that implemented the protocol.

Due to the potential for contamination and degradation by RNase enzymes, as well as health concerns in handling some substances and chemicals, best practices in aseptic wet lab techniques must be practiced at all times during RNA isolation. Chief among these are the critical need to avoid contamination of samples by using extreme care when moving liquids and opening and closing tubes to avoid aerosols. Because of the risk of degradation by RNase enzymes, it is essential to use sterile RNase-free equipment, disposable plastics and solutions. RNase degradation and contamination can be avoided by keeping samples constantly frozen at low temperature (< -80 °C) prior to adding buffers that denature or immobilize RNase. Treating equipment with RNase denaturants (e.g. RNase Zap, Ambion, Austin, TX) and solutions with diethylpyrocarbonate (DEPC) can also prevent contamination and/or degradation of samples, but it can have some negative effects on samples. Many additional helpful tips for successful RNA isolation are available in Sambrook and Russell¹ and in Appendix A of Qiagen’s RNeasy Mini Handbook downloadable from www.qiagen.com.

ATTACHMENTS

journal.pone.0050226.s0
11.PDF

FILES

RNA Isolation from Plant Tissue Protocol 1: Qiagen RNeasy Plant Mini Kit
Version 1
by Eric Carpenter

RNA Isolation from Plant Tissue Protocol 2: McKenzie et al's Qiagen hybrid method
Version 1
by Eric Carpenter

RNA Isolation from Plant Tissue Protocol 3: CTAB-PVP Method
Version 1
by Eric Carpenter

RNA Isolation from Plant Tissue Protocol 4: CTAB-PVP-TRizol Method
Version 1
by Eric Carpenter

RNA Isolation from Plant Tissue Protocol 5: pBIOZOL Method
Version 1
by Eric Carpenter

This is an open access protocol distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
RNA Isolation from Plant Tissue Protocol 18: innuPREP Plant RNA Kit
Version 1
by Eric Carpenter

This is an open access protocol distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.