

Jan 28, 2022

RNA extraction from colonial tunicates

DOI

dx.doi.org/10.17504/protocols.io.b33nqqme

Marta Wawrzyniak¹, Simon Blanchoud¹

¹University of Fribourg

Blanchoud lab, UNIFR

Marta Wawrzyniak

University of Fribourg

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.b33nqqme

Protocol Citation: Marta Wawrzyniak, Simon Blanchoud 2022. RNA extraction from colonial tunicates. protocols.io https://dx.doi.org/10.17504/protocols.io.b33nqqme

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: January 20, 2022

Last Modified: January 28, 2022

Protocol Integer ID: 57166

Keywords: ascidians, colonial tunicates, RNA extraction, rna extraction from colonial tunicate, rna extractions in marine, rna extraction, botrylloides diegensi, rna, extraction, colonial tunicate, blood cell

Abstract

This protocol has been successfully used with Botrylloides diegensis and has been adapted from the following publication:

An efficient low-cost laboratory workflow for the study of blood cells and RNA extractions in marine invertebrates

Guidelines

Change gloves frequently, particularly as the protocol progresses from crude extracts to more purified materials. Use sterile tubes. Perform all steps on ice and use RNAse-free water unless otherwise stated.

Materials

Liquid nitrogen

Sterile tubes and plastic pestles

Extraction buffer: 0.2M Tris-HCl pH 7.5, 0.1M LiCl, 5mM EDTA, 1/10 of the total volume of SDS 10%

Phenol pH 4 (4 C)

Chloroform

LiCI (for 50mL: 12.6g 6M LiCI; 6.3g 3M LiCI)

SC-EtOH: Sodium acetate + 100% Ethanol (1/3:2/3)

70% and 100% Ethanol

RNase-free water

Troubleshooting

- 1 Clean the slide from which you will take the colony of your interest. See <u>Cleaning</u> <u>colonial ascidians</u>.
- 2 Isolate a cleaned colony composed of approx. 20 zooids.
- 2.1 Transfer to a tube and spin at maximum speed for 00:02:00.

2m

- 2.2 Remove the excess water and shock-freeze the tube in liquid nitrogen.
- Add \perp 400 μ L of extraction buffer to the frozen sample and macerate with a plastic pestle.
- 4 Add \perp 100 μ L more of extraction buffer and \perp 500 μ L of 1:1 phenol:chloroform.
- 5 Mix the tube by inversion a couple of times until it gets cloudy.
- 6 Centrifuge the homogenate at 1400 g for 00:05:00 at 4 °C.

5m

- 7 Carefully collect 400μ L of the upper phase into a new tube.
- 7.1 Note: if desired this sample could be used for DNA extraction carefully transfer $\Delta 200 \, \mu$ of the interphase into a new tube (See <u>DNA extraction from colonial</u> tunicates).
- 8 Add $\underline{\underline{A}}$ 500 μL of [M] 6 Molarity (M) LiCl to the supernatant.
- 9 Incubate the mixture at \$ -80 °C for \bigcirc 01:00:00 .

1h

- 10 Centrifuge at 1400 g for 00:10:00 at 4 4 °C .
- Discard the supernatant and resuspend the pellet in LiCl.
- 12 Shake slowly for 00:15:00 at 8 Room temperature on a linear shaker.
- 13 Centrifuge at 1400 g for (5) 00:10:00 at (4 °C).
- 14 Discard the supernatant and resuspend the pellet in 🚨 1 mL of SC-EtOH solution.
- 15 Incubate at \$\mathbb{8} -80 \cdot \cdot for \cdot 00:15:00 \cdot.
- 16 Centrifuge at 1400 g for 00:15:00 at \$ 4 °C .
- Discard the supernatant and wash the pellet with 4 1 mL of [M] 70 % volume Ethanol.
- 18 Centrifuge at 1400 g for 00:05:00 at 4 °C.
- Discard the supernatant and place the tubes up-side-down on a paper towel for 00:05:00 to 00:10:00 .
- Resuspend the pellet in RNase-free water (Δ 20 μ L to Δ 100 μ L depends on the amount of pellet).
- Quantify the RNA concentration and quality using the NanoDrop, the capillary electrophoresis and/or the Bioanalyzer.
- 22 Store at **3** -80 °C.

15m

15m

15m

5m

15m

