Oct 16, 2019 Version 1

Ribosome Purification for OnePot PURE cell-free system V.1

DOI

dx.doi.org/10.17504/protocols.io.5bbg2in

Konstantinos Ragios¹

¹EPFL - EPF Lausanne

iGEM EPFL

Konstantinos Ragios EPFL - EPF Lausanne

DOI: dx.doi.org/10.17504/protocols.io.5bbg2in

External link: https://pubs.acs.org/doi/10.1021/acssynbio.8b00427

Protocol Citation: Konstantinos Ragios 2019. Ribosome Purification for OnePot PURE cell-free system. **protocols.io**. <u>https://dx.doi.org/10.17504/protocols.io.5bbg2in</u>

License: This is an open access protocol distributed under the terms of the **<u>Creative Commons Attribution License</u>**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: July 10, 2019

Last Modified: October 16, 2019

Protocol Integer ID: 25667

Keywords: ribosomes, purification, PURE, cell-free, iGEM

Abstract

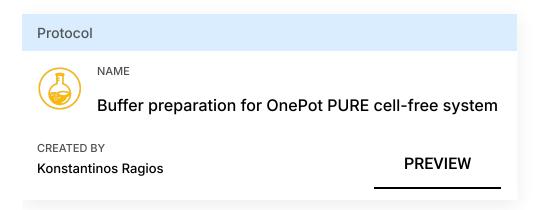
In this protocol we explain the procedure of ribosomes purification with the method of hydrophobic interaction chromatography (HIC) so they can be used for a PURE cell-free system.

Materials

Material/Consumables:

- Liquid LB medium (pH 7) Autoclaved
- Ethanol 70%
- A19 E. Coli strain
- Glycerol stock 40%
- Suspension buffer
- β-Mercaptoethanol
- Milli-Q water
- Ice
- 0.22µm PES membrane filter
- 20% Ethanol
- Buffer C
- Buffer B
- NaOH (1M)
- Acetic Acid (0.1M)
- Cushion buffer
- Ribosomes buffer

Equipment:


- Flame
- 1I Erlenmeyer Flask narrow mouth with baffles Autoclaved
- Incubator
- 2 * 5I Erlenmeyer Flask narrow mouth with baffles Autoclaved
- OD600 Spectrophotometer
- Centrifuge
- Sonicator
- 3*250ml Beaker
- Syringe
- 2*5ml HiTrap Butyl HP Column
- Ultracentrifuge
- Magnetic stirrer

Safety warnings

• When handling β-Mercaptoethanol the researcher should work in a chemical hood and wear protective glasses.

Before start

The recipes of the buffers used in this protocol can be found here:

Small cell culture

1

Note

Work under flame Sterilize the bench with 70% Ethanol

Add 100ml of LB medium to the 1L Erlenmeyer flask

- 1 Inoculate the LB with 10µl of A19 E. coli strain kept in glycerol stock
- 2 Incubate overnight (at least 12 hours) at 37°C rotating at 250rmp

Large cell culture

3

Note

Work under flame Sterilize the bench with 70% Ethanol

Add 2I of LB medium to each of the two 5I flasks

4 Inoculate the flasks with 30ml of the A19 E. Coli culture each

Note

To store some of the remaining bacteria: Add to the desired tubes same quantity of the bacterial sample and 40% Glycerol stock and mix. Then you may store them at -80° C for future use.

5 Incubate the flasks for 2 hours at 37°C rotating at 180rpm

- 6 Test the bacterial sample with OD600 Spectrophotometer
- 6.1 Add 1ml of the sample to a cuvette and measure it
- 6.2 If the measurement is lower than 1.0 continue incubating and after the appropriate time repeat the measurement

Note

Take into account that E.coli has a doubling time of about 20-30 minutes

Cell suspension and lysis

7

Note

Precool the centrifuge to 4°C before using as the sample is quit sensitive

Centrifuge the bacterial sample for 20min with 6000 RCF at 4°C

- 8 Remove the supernatant from the tubes .The cells should be shaped into a pellet on the wall of the tube
- 9 Add 25 μ l of β -Mercaptoethanol to 50ml of Suspension buffer

Note

The final concentration of β -Mercaptoethanol in the buffers should always be 7mM before each use

- 10 Use 40ml of the buffer to resuspend the cells and then with the another 10ml wash the tubes to collect any cells left attached to the tubes
- 11 Gather the sample into two tubes (appr. 25-35ml liquid in each)

Note

At this point we can store the samples at -80^oC overnight

12

Note

Clean the sonicator by applying one operation cycle to milli-Q water

Sonicate each tube on ice with 20s on 20s off for an active time of 4min at 70% of total power

Note

It is very important to keep the cells on ice to avoid damaging the proteins as they are very sensitive to temperature

13

Note

Precool centrifuge at 4°C

Centrifuge the samples for 20min with 20000RCF at 4°C

Note

Debris are gathered on the walls in pellet shape

- 14 Collect the sample into a single beaker and measure the total volume (e.g. 60ml)
- 15 Prepare the same quantity of High salt suspension buffer by adding 2000x concentration of β -Mercaptoethanol (e.g. add 30 μ l of β -Mercaptoethanol to 60ml of High salt suspension buffer) and mix the solutions.

16

prote	OCOIS.IO Part of SPRINGER NATURE
	Note
	Precool centrifuge at 4 ^o C
	Centrifuge the samples for 20min with 20000RCF at 4 ^o C
	Note
	Due to the use of the High salt buffer the unwanted debris will be precipitated
17	Filter the supernatant through a syringe filter with a 0.22 μm PES membrane and gather the sample to a single Beaker
Ribo	osome purification
18	Preparation of the purifier: Clean the input filter of the AKTA Purifier Set the ambient temperature to 4 ^o C Connect three HiTrap Butyl HP column (5ml) in series to the purifier
	Preparation of the buffers: Add 75μl of β-Mercaptoethanol to 150ml of Buffer C Add 60μl of β-Mercaptoethanol to 120ml of Buffer D
19	Remove the ethanol in the columns with 45ml of Milli-Q water
	Note
	Set up the flow rate as 4 ml/min (Monitor the pressure while running the column and do not exceed the Max limit of pressure of columns.)
20	Equilibrate columns with 60 ml buffer C
21	Add approximately 90% of the lysate sample to the system
22	Wash the column with 45mL of wash buffer 1 (100% buffer C)

~ 1			·····
	protocols.io	Part of	SPRINGER NATURE

- 23 Wash the column with 75mL of wash buffer 2 (80 buffer C, 20% buffer D)
- Elute the ribosomes with 60ml of elution buffer 1 (50% buffer C, 50% buffer D) and then with 60ml of elution buffer 2 (100% buffer D)
- 25 The eluted ribosomes are collected into tubes of 4.5ml
- 26 Pick the tubes that have the biggest absorbance in wave length 280nm

Column recovery

- 27 Wash with 45ml of milli-Q water
- 28 Wash with 45ml of NaOH (1M)
- 29 Wash with 45ml of milli-Q water
- 30 Wash with 45ml of Acetic Acid (0.1 M)
- 31 Wash with 45ml of milli-Q water
- 32 Equilibrate with 45ml of Ethanol 20%

Note

After the cleaning the column is stored at $4^{\rm o}{\rm C}$ in 20% ethanol and can be reused

Ribosome collection

33

	Note
	We will use two tubes for Ultracentrifuge
	Add 14 μI of β -Mercaethanol to 28ml of Cushion buffer and mix
34	Place 14ml of Cushion Buffer to each of the Ultracentrifuge tubes
35	Carefully place the ribosomes solution on top of the cushion buffer and make sure that we still see the separation layer
36	Ultracentrifuge for 16 hours with 24000RPM (100000RCF) at 4 ^o C
37	Discard the liquid
	Note
	The pellet of ribosomes might not be visible at this point
38	Add 2 μI of β -Mercaethanol to 4ml of Ribosome Buffer and mix
39	Add 500 μI of Ribosome buffer to the wall of the tube and slightly spin to wash the cushion buffer on each tube and then discard the liquid
40	Repeat step No 39
41	Add 100 μI of Ribosome buffer to each tube and resuspend the cells with a magnetic stirrer on ice for 10min at 200rpm
42	Collect the samples to a single tube (Tube No1)
43	Wash the centrifuge tubes with 100 μI of Ribosome Buffer and add that to another tube (Tube No2)

Mea	asurements and concentration
44	Load the solution to a 0.5mL Amicon Ultra filter with 3kDa molecular weight cutoff and centrifuge at 14000RCF for 10min at 4
	Note
	Use two separate filter for Tube No1 and No2
45	Dilute 1µl of the concentrated solution to 99µl of ribosome buffer (or milli-Q water?) and measure the absorbance at 260nm
46	Optionally , if the absorbance of Tube No2 is more than 10% of the one measured for the Tube No1 you can mix the two samples and repeat steps 44 and 45
47	
	Note
	Absorbance of 10 corresponds to 23uM concentration
	Adjust the final concentration 10uM by dilution with ribosome buffer
Sto	rage
48	Aliquote the final solution according to your needs (0.9 μ l are needed for one 5 μ l

reaction) and store at -80^oC