Nov 19, 2018 Version 1

• rev-ChIP V.1

DOI

dx.doi.org/10.17504/protocols.io.vp5e5q6 Lorane Texari¹, Carlos Guzman¹, Sven Heinz¹ ¹University of California, San Diego

Carlos Guzman

DOI: dx.doi.org/10.17504/protocols.io.vp5e5q6

Protocol Citation: Lorane Texari, Carlos Guzman, Sven Heinz 2018. rev-ChIP. protocols.io <u>https://dx.doi.org/10.17504/protocols.io.vp5e5q6</u>

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol in our group and it is working.

Created: November 18, 2018

Last Modified: November 19, 2018

Protocol Integer ID: 17885

Keywords: ChIP-seq

Abstract

Understanding the precise regulation of transcriptional programs in human health and disease requires the accurate identification and characterization of genomic regulatory networks. Next-generation sequencing (NGS) technologies are powerful, and widely applied tools to map the in vivo genome-wide location of transcription factors (TFs), histone modifications, chromatin accessibility, and nascent transcription that make up these regulatory networks. While chromatin immunoprecipitation followed by sequencing (ChIP-seq) is one of the oldest, and most-utilized experimental techniques to study the location and abundance of TFs, experiments still frequently require optimization to reproducibly yield good data with high signal-to-noise ratios due to the massive variability between possible antibody-antigen combinations and commercial reagents.

To overcome these obstacles, we systematically carried out well over 500 ChIP-seq experiments designed to test every aspect of typical ChIP-seq experiments and developed rev-ChIP, a novel ChIP-seq method that is optimized for scalability, robustness, low-input, speed, cost efficiency and data quality. We find that rev-ChIP can be scaled to work for cell numbers ranging from millions to under a thousand, and from a single sample to 500 samples a week in a non-automated fashion with minimal hands-on time. Additionally, rev-ChIP has been tested on a variety of sample types ranging from cell lines to sorted primary cells and solid tissues.

Input Cleanup

- 3 Take $_$ 10 μ L of each sample (for input) and put them into new PCR strip.
- Dilute lysis buffer (LB3 add 55ul 10% Triton X-100, Metivier add 750ul Metivier
 Dilution Buffer, RIPA None). If splitting lysates for IP, make sure diluted samples are well
 mixed. Split lysates as required if needed.
- 5 Add $_$ 68 μ L of Elution Buffer (10mM Tris pH8, 0.5% SDS, 5mM EDTA, 280mM NaCl) + $_$ 1 μ L RNase A to each input sample and incubate for \bigcirc 00:15:00 at 37 °C .
- 6 Add $_$ 1 µL 55 of Proteinase K to each input sample and incubate at \$ 55 °C for 0 01:00:00 and then at \$ 65 °C for 0 00:30:00.

Immunoprecipitation

7 Prepare Dynabeads A/G: capture Dynabeads on magnet, remove supernatant and resuspend in equal volume of appropriate lysis buffer.

Note

For LB3 use LB3 + 1/9th volume of 10% Triton X-100, for Metivier use an equal volume of Metivier Dilution Buffer and for RIPA use an equal volume of RIPA buffer.

8 Add the appropriate volume of beads + antibody to each ChIP sample.

9 Incubate IP overnight on wheel at	₽ 4 °C	(rotating at 8rpm).
-------------------------------------	---------------	---------------------

Note

Optionally, you can incubate IP at 📲 4 °C for 🚫 01:00:00 in most cases.

Input Cleanup

10 Create mastermix of $\boxed{\square} 2 \mu L$ 1 SpeedBeads + $\boxed{\square} 120 \mu L$ 120% PEG8000/1.5M NaCL (8.5% PEG, 1M NaCl), mix thoroughly, and add $\boxed{\square} 122 \mu L$ of mastermix to each input sample.

11 Incubate at RT for 🚫 00:10:00 .

12 Wash 2x with 200μ of 80% EtOH on magnet (move strip side to side 10x slow, 10x fast).

Note

We suggest using a repeater pipette here to speed things up.

Note

If magnet not available we suggest vortexing beads.

13 Air-dry until cracks appear on bead pellet.

Note

Air-drying should take approximately 🚫 00:14:00 .

14 Elute in Δ 15 μL TT (0.05% Tween 20, 10mM Tris pH 8.0, cold).

Note

We suggest using a repeater pipette here to speed things up.

	Note
	Can store at 📲 -20 °C and stop for the day.
14/-	
was	snes
15	Add 100x PIC to WBI/III and TET ($_$ 10 μ L PIC per $_$ 1 mL WBI/WBIII/TET). Do 3x washes with $_$ 180 μ L WBI + PIC, 3x washes with $_$ 180 μ L WBIII + PIC, and 2x washes with $_$ 185 μ L cold TET + PIC.
	Note
	We suggest using a multichannel pipette here to speed things up.
	Note
	The addition of PIC (Protease Inhibitor Cocktail) is not required, but highly recommended.
16	Resuspend beads in 425μ L of cold TT using repeater pipette.
Libr	ary Preparation
17	Collect beads and take $\boxed{2}$ 2 μ L of each input supernatant (1-2ul for 500K cells) that will

be library prepped and add $\boxed{4}$ 23 μ L of TT to each input taken.

18	Create a mastermix of $\boxed{1.5 \ \mu L}$ of Enzyme Mix End Prep + $\boxed{1.5 \ \mu L}$ of End Prep Reaction Buffer per sample, mix well and add $\boxed{1.5 \ \mu L}$ of mastermix to each sample. Incubate for $\textcircled{0} 00:30:00$ at $\boxed{1.5 \ 20 \ C}$ and then $\textcircled{0} 00:30:00$ at $\boxed{1.5 \ C}$.
19	Add $\boxed{1}$ 1 μ L of Bioo ChIP Adaptors (10.625uM) to each sample.
20	Create a mastermix of $\boxed{\pm}$ 15 µL Ligation Master Mix + $\boxed{\pm}$ 0.5 µL of Ligation Enhancer per sample, mix well, and add $\boxed{\pm}$ 15.5 µL of mastermix to each sample and incubate for $\boxed{00:15:00}$ at $\boxed{20 \circ C}$.
21	Create a STOP solution mastermix of $\boxed{\Box} 4 \mu L$ 10% SDS + $\boxed{\Box} 3 \mu L$ 0.5M EDTA + $\boxed{\Box} 20 \mu L$ water per sample and add $\boxed{\Box} 27 \mu L$ of mastermix to each sample.
22	Add \underline{A} 4.5 μ L of 5M NaCl to each sample.
	Note
	We recommend using a multichannel to speed things up.
Prot	einase K and Reverse Crosslinking

26 Wash 2x with ▲ 200 µL of 80% EtOH on magnet (move strip side to side 10x slow, 10x fast).
Note

We recommend using a repeater pipette to speed things up.

27 Air-dry until cracks appear on bead pellet.

Note
Air-drying should take approximately ③ 00:14:00 .

28 Elute in ▲ 25 µL TT (0.05% Tween 20, 10mM Tris pH 8.0, cold). Collect beads on magnet and transfer supernatant into new PCR strips.
Note
We recommend using a multichannel to speed things up.

Library Prep Amplification PCR

29 Do PCR.

_	Mastermix Library PCR		
	25.5ul MM + 24.5ul sample	1x	20x
_	Sample	24.5	
_	(Blue Cap) NEBNext Ultra II Q5 2x MM	25	500
	100uM Solexa 1GA	0.25	5
	100uM Solexa 1GB	0.25	5

PCR Program		
	98°C	30 seconds

R	98°C	10 seconds
60°C	15 seconds	
72°C	30 seconds	
	72°C	1 minute
	4°C	ON

Final Cleanup

30	Make mastermix of		Δ 2 μL	SpeedBeads +	👗 38.5 μL	of per sample and add
	👗 40.5 μL	of mastermix to each sample.				

31 Incubate at RT for 👏 00:10:00 .

32 Wash 2x with 200μ of 80% EtOH on magnet (move strip side to side 10x slow, 10x fast).

Note

We recommend using a repeater pipette to speed things up.

33 Air-dry until cracks appear on bead pellet.

Note

Air-drying should take approximately 🚫 00:14:00 .

34 Elute in $\boxed{_20 \ \mu L}$ of TT.