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Disclaimer
DISCLAIMER - FOR INFORMATIONAL PURPOSES ONLY; USE AT YOUR OWN RISK

The protocol content here is for informational purposes only and does not constitute legal, medical, clinical,
or safety advice, or otherwise; content added to protocols.io is not peer reviewed and may not have
undergone a formal approval of any kind. Information presented in this protocol should not substitute for
independent professional judgment, advice, diagnosis, or treatment. Any action you take or refrain from
taking using or relying upon the information presented here is strictly at your own risk. You agree that
neither the Company nor any of the authors, contributors, administrators, or anyone else associated with
protocols.io, can be held responsible for your use of the information contained in or linked to this protocol
or any of our Sites/Apps and Services.

Abstract

Here we describe the construction of recombinant retroviral expression vectors based on pLXSN-HygR that drive
the ectopic expression of the Epidermal Growth Factor (EGF), Transforming Growth Factor alpha (TGFalpha),
Neuregulin 2beta (NRG2beta), or the NRG2beta Q43L mutant protein.
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Introduction

Elevated signaling by members of the epidermal growth factor receptor (EGFR/ErbB)
family of receptor tyrosine kinases contributes to numerous human malignancies. This
elevated signaling may be due to gain-of-function mutations in the receptor genes,
increased receptor gene transcription, or elevated ligand expression [1-11]. Because
these receptors are tractable targets for therapeutic intervention [12-32], there is much
interest in tools that can be used to study these mechanisms of elevated signaling and
the biological consequences of elevated signaling.

Here we describe the construction of recombinant retroviral expression vectors based on

PLXSN-HygR ( E PLXSN-HygR.dna 56KB ) [33] that drive the ectopic expression of the
Epidermal Growth Factor (EGF) [34], Transforming Growth Factor alpha (TGFalpha) [34],
Neuregulin 2beta (NRG2beta) [35-40], or the NRG2beta Q43L mutant protein [39, 40].

Methods

3

3.1

Construction of pLXSN-HygR-EGF

We have previously described the construction of pENTR-EGF-Short (

E PENTR-EGF-Short.dna 32KB ) [34]. This plasmid encodes the soluble, mature form
of EGF. This EGF coding sequence is flanked in frame on the 5’ end by a sequence that
encodes a BiP signal sequence to facilitate protein trafficking. The EGF coding
sequence is flanked in frame on the 3' end by V5 and His6 tags to facilitate
immunodetection and purification. The sequence of the entire BiP-EGF-V5-His6 fusion
protein is shown in Figure 1 (below).

Figure 1.

BiP-EGF-V5-His6
MKLCILLAVVAFVGLSLGRSNSDSECPLSHDGYCLHDGVCMY IEALDKYACNCVVGY IGERCQYRDLKWWELRPRFEGKPIPNPLLGLDSTRTGHHHHHH

BiP-TGFalpha-Short-V5-His6
MKLCILLAVVAFVGLSLGRSVVSHFNDCPDSHTQFCFHGTCRFLVQEDKPACVCHSGYVGARCEHADLLAPRFEGKPI PNPLLGLDSTRTGHHHHHH

BiP-NRG2beta-V5-His6
MKLCILLAVVAFVGLSLGRSSGHARKCNETAKSYCVNGGVCYYIEGINQLSCKCPVGYTGDRCQQFAMVNFSKHLGFELKEAEELYQKPRFEGKPIPNPLLGLDSTRTGHHHHHH

BiP-NRG2beta-Q43L-V5-His6
MKLCILLAVVAFVGLSLGRSSGHARKCNETAKSYCVNGGVCYYIEGINQLSCKCPVGYTGDRCLQFAMVNFSKHLGFELKEAEELYQKPRFEGKPIPNPLLGLDSTRTGHHHHHH

The BiP sequence is underlined, the EGF sequence is doubly underlined, and the V5
sequence is underlined.
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3.2  We amplified the BiP-EGF-V5-His6 coding sequence from pENTR-EGF-Short using
primers Modified-BiP-Primer and Modified-His6-Primer, as shown in Figure 2 (below -

also see I8 PENTR-EGF-Short.dna 32KB .

Figure 2.

Modified-BiP-Primer
5’gttaacctcgagatgaagttatgcatattactggccgtc

Modified-His6-Primer
5’ gttaacggatccctcaatggtgatggtgatgatgaccg

The resulting amplicon is predicted to be approximately 328 bp in length and contain a
unique Xhol site immediately upstream of the BiP coding sequence and a unique BamHI
site immediately downstream of the His6 coding sequence. Thus, the amplicon was
digested with Xhol and BamHI and was ligated to the 6412 bp fragment of pLXSN-HygR-

ERBB2 E PLXSN-HygR-ERBB2.dna 72KB ) '\yhich encodes the pLXSN-HygR vector
sequences. We used standard molecular biology techniques to complete this
subcloning. Candidate clones were validated by restriction mapping and next-
generation DNA sequencing (NGS), resulting in pLXSN-HygR-EGF (

BB pLXSN-HygR-EGF.dna 53KB ).

4 Construction of pLXSN-HygR-TGFalpha-Short

4.1 We have previously described the construction of pENTR-TGFalpha-Short (

ﬁ PENTR-TGFalpha-Short.dna 30KB ) [34]. This plasmid encodes the soluble, mature
form of TGFalpha. This TGFalpha coding sequence is flanked in frame on the 5' end by a
sequence that encodes a BiP signal sequence to facilitate protein trafficking. The
TGFalpha coding sequence is flanked in frame on the 3' end by V5 and His6 tags to
facilitate immunodetection and purification. The sequence of the entire BiP-TGFalpha-
Short-V5-His6 fusion protein is shown in Figure 1 (above). The BiP sequence is
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4.2

5.1

5.2

underlined, the TGFalpha-Short sequence is doubly underlined, and the V5 sequence is
underlined.

We amplified the BiP-TGFalpha-Short-V5-His6 coding sequence from pENTR-TGFalpha-
Short using primers Modified-BiP-Primer and Modified-His6-Primer (Figure 2 above-

also see E PENTR-TGFalpha-Short.dna 30KB ) ' Tne resulting amplicon is predicted to
be approximately 319 bp in length and contain a unique Xhol site immediately upstream
of the BiP coding sequence and a unique BamHI site immediately downstream of the
His6 coding sequence. Thus, the amplicon was digested with Xhol and BamHI and was
ligated to the 6412 bp fragment of pLXSN-HygR-ERBB2 (

ﬁ PLXSN-HygR-ERBB2.dna 72KB ) hich encodes the pLXSN-HygR vector
sequences. We used standard molecular biology techniques to complete this
subcloning. Candidate clones were validated by restriction mapping and next-
generation DNA sequencing (NGS), resulting in pLXSN-HygR-TGFalpha-Short (

E pLXSN-HygR-TGFalpha-Short.dna 53KB ).

Construction of pLXSN-HygR-NRG2beta and pLXSN-HygR-NRG2bheta-Q43L

We have previously described the construction of pMT-BiP-NRG2beta-V5-His6 (

ﬁ PMT-BiP-NRG2beta-V5-His6.dna 46KB ) [36 37]. This plasmid encodes the
soluble, mature form of NRG2beta. This NRG2beta coding sequence is flanked in frame
on the 5’ end by a sequence that encodes a BiP signhal sequence to facilitate protein
trafficking. The NRG2beta coding sequence is flanked in frame on the 3' end by V5 and
His6 tags to facilitate immunodetection and purification. The sequence of the entire
BiP-NRG2beta-V5-His6 fusion protein is shown in Figure 1 (above). The BiP sequence is
underlined, the NRG2beta sequence is doubly underlined, and the V5 sequence is
underlined.

We amplified the BiP-NRG2beta-V5-His6 coding sequence from pMT-BiP-NRG2beta-V5-
His6 using primers Modified-BiP-Primer and Modified-His6-Primer (Figure 2 above -
also see [ PMT-BiP-NRG2beta-V5-His6.dna 46KB ). The resulting amplicon is

predicted to be approximately 373 bp in length and contain a unique Xhol site
immediately upstream of the BiP coding sequence and a unique BamHI site immediately
downstream of the His6 coding sequence. Thus, the amplicon was digested with Xhol
and BamHI and was ligated to the 6412 bp fragment of pLXSN-HygR-ERBB2 (

A
E PLXSN-HygR-ERBB2.dna 72KB ) '\yhich encodes the pLXSN-HygR vector
sequences. We used standard molecular biology techniques to complete this
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5.3

subcloning. Candidate clones were validated by restriction mapping and next-
generation DNA sequencing (NGS), resulting in pLXSN-HygR-NRG2beta (

E pLXSN-HygR-NRG2beta.dna 54KB ).

We constructed pLXSN-HygR-NRG2beta-Q43L, which encodes the Q43L mutant of
NRG2beta, in an identical manner, except we used pMT-BiP-NRG2beta-Q43L-V5-His6 (
B pMT-BiP-NRG2beta-Q43L-V5-His6... 46KB ) a5 the template for the PCR

amplification reaction. The sequence of the BiP-NRG2beta-Q43L-V5-His6 fusion protein
is provided in Figure 2 (above). The Q43L mutant is indicated by red text and yellow
highlighting. The sequence of pLXSN-HygR-NRG2beta is provided in

B4 PLXSN-HygR-NRG2beta-Q43L.dna 53KB
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