Recipe for standard BG-11 media

Forked from Recipe for standard BG-11 media

Anna Behle

Institute for Synthetic Microbiology

ABSTRACT

Recipes for standard and alternative BG11 for culturing freshwater cyanobacteria, such as Synechocystis sp. PCC 6803, as described. Media is usually not suitable for marine cyanobacteria.

Final Concentration of Medium.

CaCl2*2 H2O 0.036 g/L
Citric acid 0.006 g/L
NaNO3 1.4958 g/L
MgSO4* 7 H2O 0.0749 g/L
0.25M Na2EDTA (pH 8) 0.0056 mL/L
Na2CO3 20 µg/L
Fe(III) Ammonium citrate 6 µg/L
K2HPO4 * 3H2O 30 µg/L
TES Buffer (pH 8) 10 mM
H3BO3 2.86 mg/L
MnCl2 * 4 H2O 1.81 mg/L
ZnSO4 * 7 H2O 0.222 mg/L
Na2MoO4 * 2 H2O 0.390 mg/L
Co(NO3)2 *6 H2O 0.049 mg/L
(CuSO4 * 5 H2O 0.079 mg/L if required)

DOI

dx.doi.org/10.17504/protocols.io.7kmhu6

PROTOCOL CITATION

Anna Behle 2019. Recipe for standard BG-11 media. protocols.io

https://dx.doi.org/10.17504/protocols.io.7kmhu6

FORK FROM

Forked from Recipe for standard BG-11 media, Anna Behle

KEYWORDS

cyanobacteria, Synechocystis, Synechococcus, culture, media, medium, BG11

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Sep 23, 2019

Citation: Anna Behle (09/25/2019). Recipe for standard BG-11 media. https://dx.doi.org/10.17504/protocols.io.7kmhu6
SAFETY WARNINGS

Always work under sterile conditions when handling sterile media or stocks. Work under the clean bench.

SAFETY WARNINGS

Wear gloves when preparing stocks!
Heavy metals are toxic for the environment and need to be discarded accordingly.

ABSTRACT

Recipes for standard and alternative BG11 for culturing freshwater cyanobacteria, such as Synechocystis sp. PCC 6803, as described.

Media is usually not suitable for marine cyanobacteria.

Final Concentration of Medium.

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaCl₂·2H₂O</td>
<td>0.036 g/L</td>
</tr>
<tr>
<td>Citric acid</td>
<td>0.006 g/L</td>
</tr>
<tr>
<td>NaNO₃</td>
<td>1.4958 g/L</td>
</tr>
<tr>
<td>MgSO₄·7H₂O</td>
<td>0.0749 g/L</td>
</tr>
<tr>
<td>0.25M Na₂EDTA (pH 8)</td>
<td>0.0056 mL/L</td>
</tr>
<tr>
<td>Na₂CO₃</td>
<td>20 µg/L</td>
</tr>
<tr>
<td>Fe(III) Ammonium citrate</td>
<td>6 µg/L</td>
</tr>
<tr>
<td>K₂HPO₄·3H₂O</td>
<td>30 µg/L</td>
</tr>
<tr>
<td>TES Buffer (pH 8)</td>
<td>10 mM</td>
</tr>
<tr>
<td>H₃BO₃</td>
<td>2.86 mg/L</td>
</tr>
<tr>
<td>MnCl₂·4H₂O</td>
<td>1.81 mg/L</td>
</tr>
<tr>
<td>ZnSO₄·7H₂O</td>
<td>0.222 mg/L</td>
</tr>
<tr>
<td>Na₂MoO₄·2H₂O</td>
<td>0.390 mg/L</td>
</tr>
<tr>
<td>Co(NO₃)₂·6H₂O</td>
<td>0.049 mg/L</td>
</tr>
<tr>
<td>(CuSO₄·5H₂O if required)</td>
<td>0.079 mg/L</td>
</tr>
</tbody>
</table>

For plates:

Thaw antibiotic stocks before pouring plates.

100 x BG11 stock:

1. CaCl₂·2H₂O (3.6 g · L⁻¹)
2. Citric acid (0.6 g · L⁻¹)
3. NaNO₃ (149.58 g · L⁻¹)
4. MgSO₄·7H₂O (7.49 g · L⁻¹)
5. 0.25 M Na₂EDTA, pH 8.0 (0.56 mL · L⁻¹)

For 100x BG11 Stock -N:

- Omit NaNO₃.

Supplemental stocks for standard media:

1. 1000x Na₂CO₃: 20 mg mL⁻¹
2. 100x TES-buffer, pH 8.0 (1M), adjust with KOH
3. 1000x K₂HPO₄ x 3 H₂O: 30 mg · mL⁻¹

Citation: Anna Behle (09/25/2019). Recipe for standard BG-11 media. https://dx.doi.org/10.17504/protocols.io.7kmhu6

This is an open access protocol distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
- 1000x Fe(III) ammonium citrate (6 mg · mL⁻¹)
- 5000x CuSO₄ ⋅ 5 H₂O (395 ng · mL⁻¹) (sterilize using a filter)

Trace metal mix:

3 1000x concentration:
- H₃BO₃ (2.86 g · L⁻¹)
- MnCl₂ ⋅ 4 H₂O (1.81 g · L⁻¹)
- ZnSO₄ ⋅ 7 H₂O (0.222 g · L⁻¹)
- Na₂MoO₄ ⋅ 2 H₂O (0.390 g · L⁻¹)
- Co(NO₃)₂ ⋅ 6 H₂O (0.049 g · L⁻¹)

For BG11 lacking certain metals (e.g. for working with metal inducible promoters Pₚᵣ₆E, Pₚ₉₀A, Pₚ₇₃A etc., trace metal mix can be prepared lacking these chemicals and used instead of standard trace metal mix.

Standard 1x BG11

4 Fill 1 L bottle with 500 mL ultra pure water. Add stock solutions as shown below.

<table>
<thead>
<tr>
<th>Stock solution</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>100x BG11 Stock</td>
<td>10 mL</td>
</tr>
<tr>
<td>1000x Na₂CO₃</td>
<td>1 mL</td>
</tr>
<tr>
<td>1000x K₂HPO₄ ⋅ 3 H₂O</td>
<td>1 mL</td>
</tr>
<tr>
<td>100x TES-buffer</td>
<td>10 mL</td>
</tr>
<tr>
<td>1000x Trace Metal Mix</td>
<td>1 mL</td>
</tr>
</tbody>
</table>

Add ultra pure water to 1 L.
Autoclave.
After autoclaving, add 1 mL 1000x Fe(III) ammonium citrate.
Optional: After autoclaving, add 200 µL 5000x CuSO₄

Standard 1x BG11 -N

5 Fill 1 L bottle with 500 mL ultra pure water. Add stock solutions as shown below.

<table>
<thead>
<tr>
<th>Stock solution</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>100x BG11 Stock -N</td>
<td>10 mL</td>
</tr>
<tr>
<td>1000x Na₂CO₃</td>
<td>1 mL</td>
</tr>
<tr>
<td>1000x K₂HPO₄ ⋅ 3 H₂O</td>
<td>1 mL</td>
</tr>
<tr>
<td>100x TES-buffer</td>
<td>10 mL</td>
</tr>
<tr>
<td>1000x Trace Metal Mix</td>
<td>1 mL</td>
</tr>
</tbody>
</table>

Add ultra pure water to 1 L.
Autoclave.
After autoclaving, add 1 mL sterile 1000x Fe(III) ammonium citrate.
Optional: After autoclaving, add 200 µL sterile 5000x CuSO₄

Standard 2x BG11 for agar plates

6 Fill 500 mL bottle with 250 mL ultra pure water. Add stock solutions as shown below.
<table>
<thead>
<tr>
<th>Stock solution</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>100x BG11 Stock -N</td>
<td>10 mL</td>
</tr>
<tr>
<td>1000x Na₂CO₃</td>
<td>1 mL</td>
</tr>
<tr>
<td>1000x K₂HPO₄ x 3 H₂O</td>
<td>1 mL</td>
</tr>
<tr>
<td>100x TES-buffer, pH = 8.0</td>
<td>10 mL</td>
</tr>
<tr>
<td>1000x Trace Metal Mix</td>
<td>1 mL</td>
</tr>
</tbody>
</table>

Add ultra pure water to 500 mL.
Autoclave.
After autoclaving, add 1 mL sterile 1000x Fe(III) ammonium citrate.
Optional: After autoclaving, add 200 µL sterile 5000x CuSO₄

BG11 plates

7. Prepare 1.5 % agar: Weigh 4.5 g Bacto Agar. Fill up to 300 mL. Autoclave.

 Microwave agar until liquid. Let cool.

8. In a 50 mL Falcon, add 1 vol 2x BG11 and 1 vol liquid 1.5 % agar. (Note: Usually, one plate requires 30-40 mL total volume.)

9. When mixture is hand warm, add appropriate antibiotics, if required. Quickly pour plate, avoiding air bubbles.