

Oct 15, 2019

Quantifying Biogenic Silica (bSi) Deposition Rates Adapted Method & Fluorescence Reading (PDMPO) via Fluorometer

DOI

dx.doi.org/10.17504/protocols.io.735hqq6

Brittany N Zepernick¹, Matthew Saxton², Steven W Wilhelm³

¹University of Tennessee, Knoxville; ²Miami University of Ohio; ³The University of Tennessee, Knoxville

The Aquatic Microbial E...

Great Lakes Center for F...

Brittany N Zepernick

University of Tennessee, Knoxville

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.735hqq6

External link: http://wilhelmlab.utk.edu/

Collection Citation: Brittany N Zepernick, Matthew Saxton, Steven W Wilhelm 2019. Quantifying Biogenic Silica (bSi) Deposition Rates Adapted Method & Fluorescence Reading (PDMPO) via Fluorometer. protocols.io

https://dx.doi.org/10.17504/protocols.io.735hqq6

Manuscript citation:

Brittany N. Zepernick1, Matthew A. Saxton2, Steven W. Wilhelm1 University of Tennessee Knoxville1, Miami University2 Adapted from: (Saxton et al, 2012), (LeBlanc and Hutchins 2005) Original Methods Leblanc, K., & Hutchins, D. A. (2005). New applications of a biogenic silica deposition fluorophore in the study of oceanic diatoms. Limnology and Oceanography: Methods, 3(10), 462-476. Saxton, M. A., D'souza, N. A., Bourbonniere, R. A., McKay, R. M. L., & Wilhelm, S. W. (2012). Seasonal Si: C ratios in Lake Erie diatoms —evidence of an active winter diatom community. Journal of Great Lakes Research, 38(2), 206-211.

License: This is an open access collection distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: October 10, 2019

Last Modified: October 15, 2019

Collection Integer ID: 28509

Keywords: quantifying biogenic silica, rate of silica deposition, silica deposition, rate of frustule synthesis, frustule biosynthesi, fluorescent dye, fluorescence reading, silica, frustule synthesis, deposited with silica, fluorometer this method, environmental sample

Abstract

This method can be used to assess and quantify the rate of silica deposition (bSi) over time in diatoms to determine their rate of frustule synthesis. This protocol has been adapted for the processing of both cultures as well as environmental samples when inoculated with PDMPO [2-(4-pyridyl)-5-((4-

(2dimethylaminoethylaminocarbamoyl)methoxy)phenyl)oxazole], which is a fluorescent dye that is co-deposited with silica during frustule biosynthesis in a 3230:1 Si:PDMPO (mol:mol) ratio.

Materials

MATERIALS

X LysoSensor™ Yellow/Blue DND-160 - Special Packaging Fisher Scientific Catalog #L7545

Utilize a TD-700 Laboratory Fluorometer linked to a computer monitor with the downloaded Turner software to obtain fluorescence readings of the samples

Troubleshooting

Safety warnings

See SDS (Safety Data Sheet) for hazards and safety warnings.

Files

Q SEARCH

Protocol

NAME

Quantifying Biogenic Silica (bSi) Deposition Rates Adapted Method

VERSION 1

CREATED BY

Ashley A Humphrey University of Tennessee, Knoxville

OPEN →

Protocol

NAME

Reading Sample Fluorescence (PDMPO) via Fluorometer

VERSION 1

CREATED BY

Ashley A Humphrey University of Tennessee, Knoxville

OPEN →