May 17, 2020

Quantification de la callose dans les filaments de *P. patens* par microscopie confocale

DOI

dx.doi.org/10.17504/protocols.io.bghejt3e

Yoan Coudert¹, Arthur Muller¹

¹Ecole Normale Supérieure de Lyon

Yoan Coudert

Ecole Normale Supérieure de Lyon

DOI: dx.doi.org/10.17504/protocols.io.bghejt3e

Protocol Citation: Yoan Coudert, Arthur Muller 2020. Quantification de la callose dans les filaments de P. patens par microscopie confocale. **protocols.io** <u>https://dx.doi.org/10.17504/protocols.io.bghejt3e</u>

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: May 17, 2020

Last Modified: May 17, 2020

Protocol Integer ID: 37126

Before start

Protocole pour microscope Leica TCS SP8

Culture

1 Faire une culture de colonie sur milieu BCD (AT) pendant 15 jours en boîte carrée (10 × 10 cm)

Aniline blue staining

- 2 Préparer la solution de travail en diluant la solution stock d'aniline bleu 1:3 (v :v) dans du tampon phosphate pH 8,5
- 3 Remplir les puits d'une plaque 48 puits avec 200µL de la solution de travail d'aniline bleu
- 4 Prélever une petite quantité de protonema à la périphérie des colonies et la placer dans les puits de la plaque 48-puits
- 5 Laisser les tissues dans la solution d'aniline bleu 30 minutes à 23°C et à l'obscurité
- 6 Rincer les échantillons à l'eau
- 7 Placer les échantillons sur lame dans une d'iodure de propidium puis déposer une lamelle

Confocal imaging

- 8 Vérifier l'échantillon à la binoculaire
- 9 Régler les paramètres du microscope cf *Paramétrage du microscope Leica TCS SP8*
- 10 Localiser l'échantillon sur la lame au grossissement x 5 (air)
- 11 Observer l'ensemble de l'échantillon au grossissement x 25 puis x 40 (eau)

- 12 Définir le nombre de tiles et leurs espacements pour l'acquisition d'images cf *Paramétrage du microscope Leica TCS SP8*
- 13 Faire acquisition de la paroi entre la cellule apicale et la cellule sub-apicale (50 réplicats biologiques)
- 14 A partir des z-stack utiliser la fonction projection maximale pour obtenir l'image finale
- 15 Sauvegarder fréquemment le projet

Traitement des images avec Fiji software

- 16 Dupliquer les images (raccourci commande + maj + D)
- 17 Changer le contraste pour toutes les images Image>Adjust>Contrast>Set
- 18 Mettre Minimum displayed value : 0 et maximum displayed value : 4095 en 12 bit

19 Appliquer les fausses couleurs : Image>Lookup tables>Fire

- 20 Ouvrir le ROI T1 (modèle 360 μm²) dans le gestionnaire de ROI : analyze>tools>ROI manager
- 21 Déplacer la ROI dans un coin où il n'y a pas de signal et mesurer la somme de l'intensité des pixels de la ROI = signal bruit de fond : analyze>set measurments>cocher integrated density analyze>measure (cntrl + m) RawIntDens

•	\varTheta 😑 Results							
	Area	Mean	Mode	IntDen	Median	RawIntDen		
1	509.918	11.458	3	5842.671	6	113114.000		

- 22 Positionner la ROI au niveau de la paroi entre la cellule apical et sub-apical et mesurer la somme de l'intensité des pixels de la ROI = signal callose brut
- 23 Signal callose brut signal bruit de fond = signal callose
- 24 Procéder de la même façon pour tous les échantillons
- 25 Enregistrer les données dans un tableur excel

Analyses statistiques

26 Dans un premier temps pour visualiser les données faire un box plot avec les différentes conditions traités

Paramétrage du microscope LEICA TCS SP8

27 Lasers

Type laser	%
Laser diode UV 405 nm (callose)	10%
Laser visible 488 nm (PI)	9% à 15%

Détecteurs

Détecteu r	Observation	Gain	Offset	Intervalle nm
PMT 2	callose	670	0,1%	440-520 nm
PMT4	autofluo chloroplaste	550	0,1%	600-720 nm
PI			560-615 nm	

Stack

- Nombre de tiles : 30
- Espacement entre les tiles : 0,70

Autres

- Grossissement : x 40
- Zoom : 1,5
- Pinhole airy : 1
- Frame average : 8
- Scan speed : 8 000 hz
- Définition de l'image : 1024×1024
- Bit : 12

Aniline blue

 λ_{ex} 390 nm

 λ_{em} 480 nm

ΡΙ

 λ_{ex} 493 nm λ_{em} 636 nm