Protocols for "Linking gut microbiome to bone mineral density: a shotgun metagenomic study of 361 elderly women"

Qi Wang¹,², Qiang Sun¹,³, Xiaoping Li¹, Zhefeng Wang⁴, Haotian Zheng¹,², Yanmei Ju¹,², Ruijin Guo¹,⁵, Songlin Peng⁴, Huijue Jia¹,⁶

¹BGI-Shenzhen, Shenzhen 518083, China;
²School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, China;
³Department of Statistical Sciences, University of Toronto, Toronto, Canada;
⁴Department of Spine Surgery, Shenzhen People's Hospital, Ji Nan University Second College of Medicine, 518020, Shenzhen, China;
⁵Macau University of Science and Technology, Taipa, Macau 999078, China;
⁶Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China.

dx.doi.org/10.17504/protocols.io.bq6imzce

ABSTRACT

Bone mass loss contributes to the risk of bone fracture in the elderly. Many factors including age, obesity, estrogen and diet, are associated with bone mass loss. Mice studies suggested that the gut microbiome might affect the bone mass by regulating the immune system, however there has been little evidence from human studies. Bone loss increases after menopause. Therefore, we have recruited 361 Chinese post-menopausal women to collect their fecal samples and metadata to conduct metagenome-wide association study (MWAS) to investigate the influence of the gut microbiome on bone health. Gut microbiome sequencing data were produced using BGISEQ500 sequencing, Bone mineral density (BMD) was calculated using Hologic dual energy X-ray machine, body mass index (BMI) and age were also recorded. This collected data allows exploration of the gut microbial diversity and their links to bone mass loss, as well as microbial markers for bone mineral density. In addition, these data are potentially useful in studying the role the gut microbiota might play in bone mass loss and in exploring the bone mass loss process.

DOI

dx.doi.org/10.17504/protocols.io.bq6imzce

COLLECTION CITATION


https://dx.doi.org/10.17504/protocols.io.bq6imzce

FORK NOTE

Citation: Qi Wang, Qiang Sun, Xiaoping Li, Zhefeng Wang, Haotian Zheng, Yanmei Ju, Ruijin Guo, Songlin Peng, Huijue Jia (01/05/2021). Protocols for "Linking gut microbiome to bone mineral density: a shotgun metagenomic study of 361 elderly women". https://dx.doi.org/10.17504/protocols.io.bq6imzce

This is an open access protocol distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Bone mass loss contributes to the risk of bone fracture in the elderly. Many factors including age, obesity, estrogen and diet, are associated with bone mass loss. Mice studies suggested that the gut microbiome might affect the bone mass by regulating the immune system, however there has been little evidence from human studies. Bone loss increases after menopause. Therefore, we have recruited 361 Chinese post-menopausal women to collect their fecal samples and metadata to conduct metagenome-wide association study (MWAS) to investigate the influence of the gut microbiome on bone health. Gut microbiome sequencing data were produced using BGISEQ500 sequencing, Bone mineral density (BMD) was calculated using Hologic dual energy X-ray machine, body mass index (BMI) and age were also recorded. This collected data allows exploration of the gut microbial diversity and their links to bone mass loss, as well as microbial markers for bone mineral density. In addition, these data are potentially useful in studying the role the gut microbiota might play in bone mass loss and in exploring the bone mass loss process.
BGISEQ-500 Sequencing
Version 1
by Xinming Liang, Beijing Genomics Institute

Quality control for metagenomics data
Version 1
by Qi Wang

DNA extraction for human microbe samples.
Version 1
by Lilan Hao

BGISEQ-500 WGS library construction
Version 1
by Xinming Liang, Beijing Genomics Institute

The calculation of gut metabolic modules from gene profile
Version 1
by wangqi

Citation: Qi Wang, Qiang Sun, Xiaoping Li, Zhefeng Wang, Haotian Zheng, Yanmei Ju, Ruijin Guo, Songlin Peng, Huijue Jia (01/05/2021). Protocols for "Linking gut microbiome to bone mineral density: a shotgun metagenomic study of 361 elderly women". https://dx.doi.org/10.17504/protocols.io.bq6imzce

This is an open access protocol distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.