Protocol for the isolation of non-parenchymal liver cells from human liver biopsies (1-2cm³)

Charlotte Scott¹, Guilliams¹

¹VIB-UGent Center for Inflammation Research, Ghent, Belgium

ABSTRACT

Optimised protocol for the isolation of non-parenchymal cells from human liver biopsies. Used on 1-2cm³ biopsies.

GUIDELINES

Process tissue ASAP after removal from patient to avoid excessive cell death.

MATERIALS

- conical tubes, 50ml Contributed by users
- RPMI 1640 (with L-glutamine and sodium bicarbonate) Sigma Aldrich Catalog #R8758
- DNase I recombinant, RNase-free Sigma Aldrich Catalog #000000004716728001
- PBS Contributed by users
- Fetal bovine serum Contributed by users
- Corning® 100µm Cell Strainer Corning Catalog #431752
- Corning® 40µm Cell Strainer Corning Catalog #431750
- EDTA Contributed by users
- Collagenase A Sigma Catalog #11088793001

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

DOI: dx.doi.org/10.17504/protocols.io.viwe4fe

Protocol Citation: Charlotte Scott, Martin Guilliams 2018. Protocol for the isolation of non-parenchymal liver cells from human liver biopsies (1-2cm³). protocols.io https://dx.doi.org/10.17504/protocols.io.viwe4fe
Protocol status: Working
We use this protocol currently in our group for single cell analysis and a more thorough flow cytometric analysis of human liver non-parenchymal cells with our main emphasis being on mononuclear phagocytes (Kupffer cells, macrophages, monocytes and Dendritic cells).

Created: Nov 12, 2018
Last Modified: Nov 12, 2018

PROTOCOL integer ID:
17718

Keywords: Liver, Non-parenchymal cells

Dissociation

1. Put liver biopsy in a new 50ml tube
2. Cut finely with scissors
3. Add 20 mL RPMI containing enzymes (1mg/ml Collagenase A & 10U/ml DNase)
4. Put in shaking water bath at 37 °C for 00:20:00
5. Shake vigorously every 00:05:00 by hand

https://dx.doi.org/10.17504/protocols.io.viwe4fe
5. Add 20 mL cold PBS and place on ice.

6. Filter through 100um filter.

7. Spin down 400g for 00:05:00.

8. Remove Supernatant.

9. Lyse RBCs if required (add 4ml RBC lysis buffer, incubate 4 °C for 00:03:00, add 20 mL PBS and spin down as per step 7).

10. Resuspend cells in FACS buffer (2% FCS, 2mM EDTA, PBS) and count.

11. Spin down as per step 7 and resuspend at desired concentration (2-5x10^6 in 200ul for flow cytometry staining).

12. Filter through 40um filter and put on plate/in tube for staining.
13 Spin down as per step 7 and proceed with staining for flow cytometry as required

14 Make antibody mix:
 1. For Live CD45+ enrichment:
 - Anti-Human CD45 APC-Cy7 Biolegend 368516 5ul/test (1 test = 5x10^6 cells in 100ul PBS)
 - Fixable Live/Dead Viability Dye Stain Thermo Fischer 65-0866-18 1:300 in PBS.

 2. For monocyte-macrophage enrichment:
 - Anti-Human CD45 APC-Cy7 Biolegend 368516 5ul/test (1 test = 5x10^6 cells in 100ul PBS)
 - Fixable Live/Dead Viability Dye Stain Thermo Fischer 65-0866-18 1:300 in PBS.
 - Anti-Human CD14 AF488 Biolegend 301804 5ul/test
 - Anti-Human CD16 PE-Dazzle 594 Biolegend 302054 5ul/test

15 Stain sample 5x10^6 cells in 100ul PBS + Antibodies for 00:30:00 at 4 °C

16 Add 5ml FACS buffer to wash (if staining in a tube) or 100ul FACS buffer to wash (if staining in a plate)

17 Spin down as per step 7

18 Resuspend in 1-2ml FACS buffer and proceed to FACS to sort cells as Live CD45+, and CD14+CD16-, CD14+CD16+ and CD14-CD16+.