

Mar 18, 2024

Version 1

Protocol for Preparing Brain Samples for MUSIC V.1

DOI

dx.doi.org/10.17504/protocols.io.x54v92e8ml3e/v1

Wenxin Zhao¹, Sheng Zhong¹

¹Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego

Human BioMolecular Atlas Program (HuBMAP) Method Development Community Tech. support email: Jeff.spraggins@vanderbilt.edu

Wenxin Zhao

Shu Chien-Gene Lay Department of Bioengineering, University ...

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

OPEN ACCESS

DOI: https://dx.doi.org/10.17504/protocols.io.x54v92e8ml3e/v1

Protocol Citation: Wenxin Zhao, Sheng Zhong 2024. Protocol for Preparing Brain Samples for MUSIC. **protocols.io** https://dx.doi.org/10.17504/protocols.io.x54v92e8ml3e/v1

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: March 15, 2024

Last Modified: March 19, 2024

Protocol Integer ID: 96794

Keywords: brain samples for music study, brain samples for music, preparing brain sample, brain sample, music study, sample,

detailed procedure, music, procedure, study

Disclaimer

DISCLAIMER - FOR INFORMATIONAL PURPOSES ONLY; USE AT YOUR OWN RISK

The protocols.io team notes that research involving animals and humans must be conducted according to internationally-accepted standards and should always have prior approval from an Institutional Ethics Committee or Board.

Abstract

Here states the detailed procedure to prepare brain samples for MUSIC study.

Troubleshooting

Tissue pulverization and crosslinking

- 1 Cut a portion of post-mortem human brain frontal cortex sample on dry ice with heavy razor blades, and collect 50 mg of the sample in a 1.5 mL LoBind tube.
- 2 Thaw the 50 mg of brain sample on ice, and chop the tissue into smaller pieces by pestle. Store the rest of the sample at -80°C.
- Incubate the sample with 10 mL of 2 mM disuccinimidyl glutarate (DSG) in 1X PBS in a 15 mL LoBind tube at room temperature for 45 min with gentle rotation.
- Wash once with 10 mL of 1X PBS by centrifugation at 1,000 x g for 4 min.
- Resuspend the sample in 15 mL of 1X PBS containing 3% formaldehyde, and incubate for 10 min with a gentle rotation.
- Quench the crosslinking reaction by the addition of 5 mL of 1.25 M glycine followed by an incubation of 5 min with a rotation.
- 7 Centrifuge the sample at 1,000 x g for 4 min, and wash the sample twice with ice-cold 1X PBS containing 0.3% BSA (wt/vol).

Nuclei isolation

- 8 Use Chromium Nuclei Isolation kit (10X genomics, 1000494) to isolate nuclei from crosslinked cortex samples.
- 9 Transfer 50 mg frozen tissue into pre-chilled sample dissociation tube.
- 10 Add 400 μ L of Lysis Buffer to Sample Dissociation Tube. Dissociate tissue with plastic pestle until homogeneous.

A	В
Component	Volume (μL)

А	В
Lysis Reagent	1000
Reducing Agent B	1
Sufactant A	10
Total Volume	1011

Lysis Buffer

- 11 Add 600 µL of lysis buffer into the tube, and mix 10 times by pipetting. Incubate on ice for 10 min.
- 12 Equally load the solution into two nuclei isolation column, and centrifuge the tubes at 16,000 x g for 20 sec at 4°C.
- 13 Vortex the flowthrough in the collection tube that contains nuclei for 10 sec at 3,200 rpm or max speed to resuspend nuclei.
- 14 Centrifuge the collection tubes for 3 min at 500 x g at 4°C to pellet nuclei. Carefully discard the supernatant.
- 15 Resuspend the nuclei in 500 μ L of Debris Removal Buffer provided by the kit by pipetting 15 times.

A	В
Component	Volume (μL)
Debris Removal Reagent	500
Reducing Agent B	0.5
Total Volume	500.5

Debris Removal Buffer

16 Centrifuge the nuclei at 700 x g for 10 min at 4°C. Carefully discard the supernatant.

17 Resuspend the nuclei in 1 mL of Wash and Resuspension Buffer.

А	В
Component	Volume (μL)
1X PBS	1750
10% BSA	200
RNase Inhibitor (40X)	50
Total Volume	2000

Wash and Resuspension Buffer

- 18 Centrifuge the nuclei at 500 x g for 5 min at 4°C. Carefully discard the supernatant.
- 19 Resuspend the nuclei again in 1 mL of Wash and Resuspension Buffer.
- 20 Centrifuge the nuclei at 500 x g for 5 min at 4°C. Carefully discard the supernatant as much as possible.
- 21 The nuclei are subjected to nuclei counting and the following procedures.