

Feb 20, 2019

Version 3

Protocol for microCT inspection of Gallium particle accelerator targets V.3

DOI

dx.doi.org/10.17504/protocols.io.ychfst6

Muofhe Tshibalanganda¹, Anton Du Plessis¹, Stephan Le Roux¹, Paul Papka²

¹CT scanner facility; ²iThemba labs

Muofhe Tshibalanganda

CT scanner facility

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

OPEN ACCESS

DOI: https://dx.doi.org/10.17504/protocols.io.ychfst6

Protocol Citation: Muofhe Tshibalanganda, Anton Du Plessis, Stephan Le Roux, Paul Papka 2019. Protocol for microCT inspection of Gallium particle accelerator targets. **protocols.io** https://dx.doi.org/10.17504/protocols.io.ychfst6

Manuscript citation:

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: February 20, 2019

Last Modified: February 21, 2019

Protocol Integer ID: 20585

Keywords: gallium particle accelerator target, gallium particle accelerator targets this protocol, protocol for microct inspection, microct inspection, gallium target, particle accelerator, gallium, microct process, laser

Abstract

This protocol described the steps used to inspect the Gallium targets used in particle accelerators. These targets are metal disks filled with Gallium, and laser welded on the edges. Various production quality issues may be present - the microCT process needs to be a standard, routine methodology for direct comparison among all such data sets. This protocol sets out the exact steps used for this analysis type.

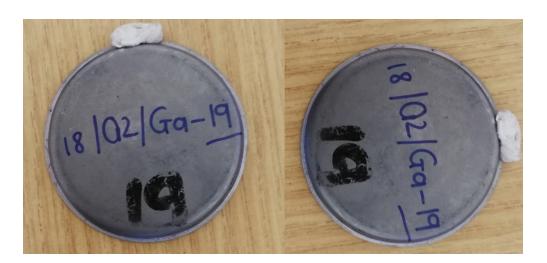
Guidelines

Each target is scanned twice: rotated 90 degrees after the first scan.

Troubleshooting

Safety warnings

Never apply procedure to used targets. Use safety gloves when handling targets.


Before start

Make sure the targets are unused. Used targets are very radioactive - life threatening.

Sample loading

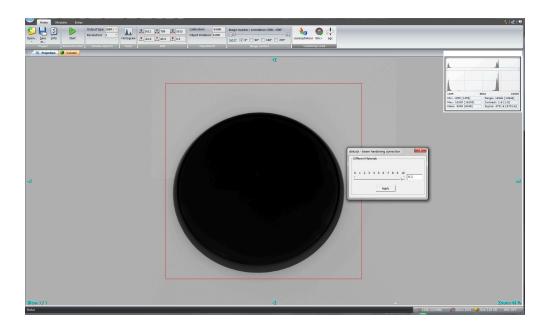
Mark the top of the disk with a small ball of prestik, this is the reference for orientation to check second scan rotation by 90 degrees (eg. in data set after scanning, to ensure the disk was rotated).

Sample Mounting

2 Load the sample on a foam (e.g. florist oasis) with prestik at top, but angled towards the flat side by up to 10 degrees. This is to reduce penetration artefacts - perfect vertical is not suggested.

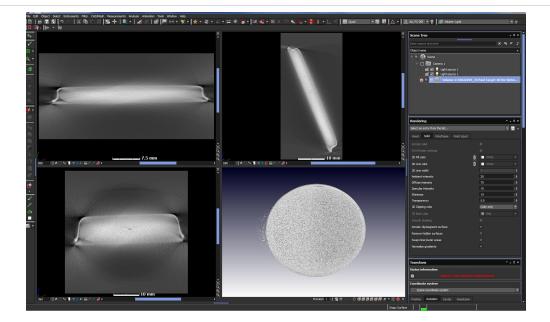
Scanning settings

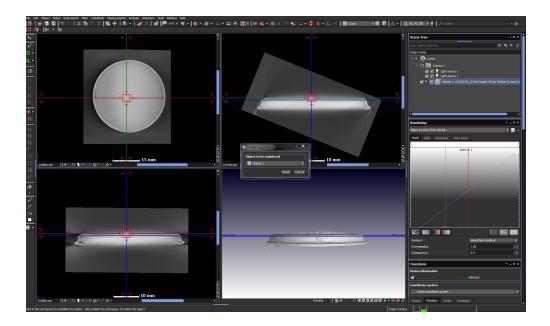
3 This is using a General Electric VTomex L240 system, but most microCT systems would work with similar settings.


Voltage	200 kV
Current	150 μΑ
X-ray Sensitivity	4
Beam Filter	0.5 mm copper
Detector filter	0.5 mm copper plate
Voxel size	30 μm
Timing	333 m/s
filter Voxel size	copper plate 30 μm

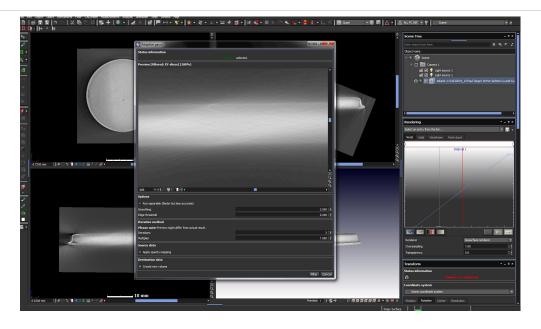
	Images	2800
	Averaging	1

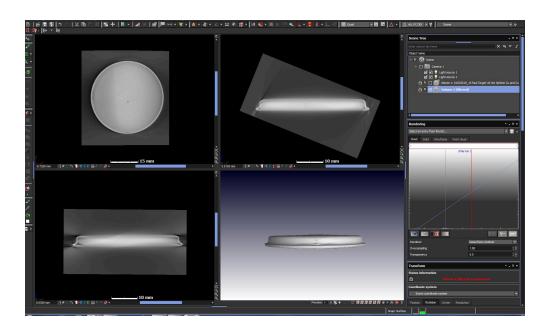
Reconstruction


4 Reconstruction of the 3D data is done using General Electric Datos 2.2, using specifically beam hardening correction value of 9.3 - this reduces beam hardening artefacts significantly.


Analysis

5 1. Analysis of 3D data is described here using Volume Graphics VGSTUDIO MAX 3.2.




2. Register the sample - use simple registration to turn the sample upright in the software windows.

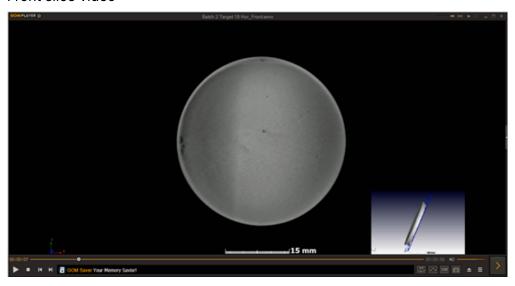
3. De-noising is done using the filters Adaptive Gauss with smoothing factor 2, edge threshold=0.2, iteration=3.

Animation

6 Create Vvdeos of only front and rotation slice with 5mm per front slice and 0.1 degree per rotational slice.

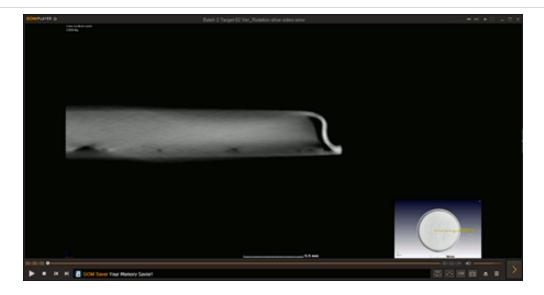
Video format: .wmv with naming:

Batch # Target # Front slice


Batch # Target # Front slice 90 degree rotation

Batch # Target # Rotation

Batch # Target # Rotation 90 degree rotation


- Rotation video are started from west (artefacts at North and South) and rotated anticlockise. Capsule is facing up, welded plate is facing down

Front slice video

Rotation video

Saving

7 The data is saved including the filtered data set, as a image stack (tiff). These can be viewed manually without special software. The analyzed volume can be opened in free myVGL software.