

Feb 21, 2024

# $\bigcirc$ Production of $\alpha$ -synuclein preformed fibrils (PFF)



Forked from Production of  $\alpha$ -synuclein preformed fibrils (PFF)

DOI

dx.doi.org/10.17504/protocols.io.dm6gp3nm5vzp/v1

Tae-In Kam<sup>1,2</sup>, Rong Chen<sup>1,2</sup>, Valina L. Dawson<sup>1,2,3,4</sup>, Ted Dawson<sup>1,2,3,5</sup>

<sup>1</sup>Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;

<sup>2</sup>Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;

<sup>3</sup>Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;

 $^4$ Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;

 $^5$ Department of Pharmacology and Molecular Sciences, and SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA



# Jacquelyn Haytayan

Weill Cornell Medicine

# Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

OPEN ACCESS



DOI: https://dx.doi.org/10.17504/protocols.io.dm6gp3nm5vzp/v1



**Protocol Citation:** Tae-In Kam, Rong Chen, Valina L. Dawson, Ted Dawson 2024. Production of  $\alpha$ -synuclein preformed fibrils (PFF). **protocols.io** <u>https://dx.doi.org/10.17504/protocols.io.dm6gp3nm5vzp/v1</u>

**License:** This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: February 07, 2024

Last Modified: September 23, 2024

Protocol Integer ID: 94861

Keywords: ASAPCRN, alpha-synuclein, preformed fibrils, PFF, SNCA, preformed fibril, synuclein, fibril

## **Abstract**

This protocol outlines the procedure to **produce preformed fibrils (PFF).** It has been adapted from Volpicelli-Daley et al., 2014



## **Materials**

- X 1X PBS Quality Biological Catalog #114-058-101
- ClearColi BL21(DE3) Electrocompetent cells Lucigen Catalog #60810
- X Protease Inhibitor Cocktail Merck MilliporeSigma (Sigma-Aldrich) Catalog #P8340
- Superdex 200 increase 10/300G GE Healthcare Catalog #45-002-570
- Amicon Ultra centrifugal filter Merck Millipore (EMD Millipore) Catalog #n/a
- X Hitrap Q Sepharose Fast Flow anion-exchange columns GE Healthcare Catalog #450-002-58
- Ni Sepharose 6 Fast Flow **GE Healthcare Catalog #**17-5318-06
- 🔯 ToxinSensor Chromogenic LAL Endotoxin Assay Kit Genscript Catalog # L00350
- PD-10 columns **GE Healthcare Catalog #**17085101
- Pierce BCA protein assay **Thermo Scientific Catalog** #23227
- **Μ** Mouse anti-pSer129-α-synuclein **BioLegend Catalog** #825701
- Mouse anti-MAP2 Merck MilliporeSigma (Sigma-Aldrich) Catalog #M9942
- Donkey polyclonal anti-mouse Alexa fluor 488 Jackson ImmunoResearch Laboratories, Inc. Catalog # Cat#715-545-151
- Donkey polyclonal anti-mouse CY3 Jackson ImmunoResearch Laboratories, Inc. Catalog #715-165-151
- 🔯 Primary cultured neuron (mouse cortical neuron) on DIV 7. Catalog #n/a

High-salt buffer: 750 mM Nacl, 10 mM Tris (pH 7.6) and 1 mM EDTA with protease inhibitors including 1 mM PMSF. Coomassie stain: 0.2% (wt/vol) Coomassie Brilliant Blue R250 and 50% (vol/vol) methanol; dissolve the dye, add 10% (vol/vol) acetic acid, and then bring it to the final volume with water. This solution can be stored indefinitely at room temperature.

**SDS-PAGE (12%)**: 4.9mL H20 (autoclaved), 2.5mL Tris HCl pH 8.8, 120uL SDS 20%, 2.5mL Bisacrylamide, 60uL APS, 5uL TEMED

### Equipment

Branson Digital sonifier, Danbury, CT, USA

**Eppendorf Thermomixer** 

Phillips CM 120 TEM (80 kV) with an AMT ER-80 charge-coupled device (8 megapixel).

Philips EM 410 TEM with a Soft Imaging System Megaview III digital camera.



# **Troubleshooting**

# Safety warnings

• CAUTION: Because of highly neurotoxic and transmission characters of  $\alpha$ -synuclein ( $\alpha$ -syn) preformed fibrils (PFF), it's strongly recommended the use of gloves, face mask, and protective goggles for all procedures involving the use of synuclein fibrils. Clean any spills with a solution of 10% SDS in water, followed by multiple successive washes in 70 % ethanol and distilled water.

Step 3. Preparation of fibrils for neuronal treatment or injection. The steps here should be done in a fume hood or biosafety cabinet.



# Generation of α-synuclein monomer

13h 5m

- Transform  $\alpha$ -synuclein plasmids (full length human  $\alpha$ -synuclein cloned into pRK172 vector) into ClearColiTM BL21-competent E. coli, that have been genetically modified so that LPS does not trigger LPS-mediated immune response. From the small scale culture in LB medium, make a bacteria cell stock and keep at  $8 80 \, \circ \text{C}$ .
- 2 Prepare starter culture by adding a cell stock to LB medium.
- Add starter culture to a large culture medium with ampicillin, followed by incubation

  Overnight at \$37 °C with shaking.
- 4 Resuspend the pellet in high-salt buffer (750 mM Nacl, 10 mM Tris (pH 7.6) and 1 mM EDTA with protease inhibitors including 1 mM PMSF.
- 5 Break the bacterial cells using a high-pressure homogenizer, micro-fluidizer.
- Boil for 00:15:00 to precipitate other proteins and then immediately incubate on On ice to cool.

15m

7 Spin at 6,000 g for 00:20:00 at 4 oc c.

20m

- 8 Use the supernatant for further dialysis with 10 mM Tris (pH 7.6), 50 mM NaCl and 1 mM EDTA.
- 9 Concentrate the protein through Amicon Ultra centrifuge filter (100 kDa cutoff).
- 10 Filter the protein using a 0.22 μm syringe filter and load it onto a Superdex 200 column.
- 11 Check each fraction by SD-PAGE, followed by Coomassie staining.



- 12 Collect the pure fractions with an appropriate  $\alpha$ -synuclein bands (~15 kDa) and dialyze with 10 mM Tris (pH 7.6), 25 mM NaCl, and 1 mM EDTA.
- 13 Store at 4 -80 °C until needed to generate fibrils
- 14 Apply protein to a Hi-Trap Q HP anion-exchange column (gradient ranging from 25mM NaCl to 1 M NaCl) and collect fractions, followed by SDS-PAGE and Coomasie staining.
- 15 Generate endotoxin-free α-synuclein: remove the bacterial endotoxins using Toxineraser endotoxin removal kit (GeneScript), and measure the level of endotoxin using ToxinSensor Chromogenic LAL Endotoxin Assay Kit (GenScript).
- 16 Concentrate the fractions, aliquot, and store at 4 -80 °C °C.

## Generation of fibrils

1w 0d 0h 10m

17 Centrifuge at 4 °C C for 00:10:00 in centrifuge at 12,000xg.

10m

- 18 Transfer the supernatant with a pipette and measure the final protein concentration using BCA protein assay.
- 19 Dilute the monomeric protein into PBS for a final concentration of 5 mg/mL.
- 20 Shake for **7 days** at 👫 37 °C with 1,000 RPM (Eppendorf Thermomixer). Solution should turn turbid during this period.
- 21 Make △ 20 μL of aliquots and freeze on dry ice. Store at 🖁 -80 °C C.
- 22 Validation of fibril formation before move to the next step (e.g. Thioflavin T, sedimentation assay)
- 22.1 **Thioflavin T assay**

10m

1. Prepare 1 mM Thioflavin T stock in PBS.



Add  $\perp \!\!\!\!\perp 5~\mu \!\!\!\!\perp$  of  $\alpha$ -synuclein PFF into  $\perp \!\!\!\!\perp 95~\mu \!\!\!\!\perp$  of 25  $\mu \!\!\!\!\perp M$  Thioflavin T. (Use  $\perp \!\!\!\!\perp 5~\mu \!\!\!\!\perp$ of PBS alone and  $\Delta 5 \mu L$  of monomeric  $\alpha$ -synuclein as a control.)

- 3. Incubate at room temperature for 60 00:10:00 .
- 4. Measure the fluorescence at an excitation 450 nm and emission at 490 nm.

### 22.2 **Sedimentation assay**

1h

- 1. Centrifuge \( \Lambda \) 20 \( \mu \) of PFFs at 100,000 g for \( \cdot \) 00:30:00 at room temperature.
- 2. Transfer the supernatant to a new tube ( $\rightarrow$  'soluble' fraction).
- 3. Resuspend the pellet in  $\perp$  20  $\mu$ L of PBS, and centrifuge it again at 100,000 g for (5) 00:30:00 at room temperature.
- 4. Discard the supernatant and resuspend the pellet in  $\perp$  20  $\mu$  of PBS ( $\rightarrow$  'pellet' fraction).
- 5. Perform SDS-PAGE, followed by Coomassie staining.

### 23 NOTE:

- Freeze/thawing can compromise the activity of PFF. Please prevent thawing of unused aliquots.
- Sterile components are used to assemble reactions to prevent microbial contamination.

# Preparation of fibrils for neuronal treatment or injection

4m

- 24 **NOTE:** All the steps here should be done in a fume hood or biosafety cabinet.
- 25 Thaw sufficient aliquots of 5 mg/mL PFF at \$\Bigs\\$ Room temperature immediately before use.
- 26 Dilute PFF to 100 μg/mL (for primary neuronal culture experiment) or 2 mg/ml (for intrastriatal injection) by adding PFF to a sterile microcentrifuge tube containing the appropriate volume of sterile PBS.
- 27 Seal the microcentrifuge with a parafilm and make a small hole for sonication.
- 28 Sonicate (Branson Digital Sonifier SFX 150 from Emerson) at amplitude 20% for a total of 60 pulses (0.5 seconds on/off cycle). Pause briefly between every 10-12 pulses to prevent solution from heating up excessively and to avoid frothing.



Allow sonicated PFF solution to settle for 00:01:00. PFF suspension is now ready for use.

1m

# 30 Quality control testing

# 30.1 Transmission electron microscopy (TEM)

2m 30s

- 1. Adsorb  $\alpha$ -synuclein PFF (prepare the samples before and after sonication) to glow discharged 400 mesh carbon coated copper grids for (3) 00:02:00 .
- 2. Quickly transfer the grids through three drips of Tris-HCI (50 mM pH 7.4), rinse, and then float upon two consecutive drops of 0.75% uranyl formate for 00:00:30 each.
- 3. Aspirate the stained solution and allow the grid to dry before imaging.
- 4. Plate on a Phillips CM 120 TEM operating at 80 kV and capture the images with an ER-80 CCD.

# 30.2 Immunofluorescence with phosphorylated α-synuclein (Ser129) antibody

30s

- 1. Add 1 µg/mL of alpha-synuclein PFF into primary cultured neurons on DIV7.
- 2. Incubate the neurons for a further 10-14 days with replacing a half of the fresh medium every 3 days.
- 3. Fix the neurons and perform double-staining immunofluorescence using p- $\alpha$ -syn (Biolegend) and MAP2 (Sigma) antibodies at \$\mathbb{8}\$ 4 °C Overnight
- 4. Visualize p- $\alpha$ -syn aggregates formed from endogenous alpha-synuclein with a confocal microscope.

### Protocol references

Volpicelli-Daley, L.A., Luk, K.C., and Lee, V.M. (2014). Addition of exogenous alpha-synuclein preformed fibrils to primary neuronal cultures to seed recruitment of endogenous alpha-synuclein to Lewy body and Lewy neurite-like aggregates. Nat Protoc *9*, 2135-2146. 10.1038/nprot.2014.143.