
Oct 25, 2019

Processing Bulk Calling Card Sequencing Data

DOI

dx.doi.org/10.17504/protocols.io.xwjfpcn

Arnav Moudgil , Rob Mitra

Washington University, Saint Louis

Transposon Calling Cards

Arnav Moudgil
Washington University, Saint Louis

1 1

1

DOI: dx.doi.org/10.17504/protocols.io.xwjfpcn

Protocol Citation: Arnav Moudgil, Rob Mitra 2019. Processing Bulk Calling Card Sequencing Data. protocols.io

https://dx.doi.org/10.17504/protocols.io.xwjfpcn

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: February 08, 2019

Last Modified: October 25, 2019

Protocol Integer ID: 20139

protocols.io | https://dx.doi.org/10.17504/protocols.io.xwjfpcn October 25, 2019 1/10

https://dx.doi.org/10.17504/protocols.io.xwjfpcn
https://www.protocols.io/researchers/arnav-moudgil
https://www.protocols.io/researchers/rob-mitra
https://www.protocols.io/researchers/arnav-moudgil
https://www.protocols.io/researchers/arnav-moudgil
https://www.protocols.io/researchers/arnav-moudgil
https://dx.doi.org/10.17504/protocols.io.xwjfpcn
https://dx.doi.org/10.17504/protocols.io.xwjfpcn
https://creativecommons.org/licenses/by/4.0/
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.xwjfpcn

Abstract

Here we present a computational pipeline for processing bulk RNA calling card data. These data will have been

generated from transfection/-duction of either undirected piggyBac transposase or your favorite transcription

factor (YFTF) fused to piggyBac. Multiple biological replicates should have been generated, each with a unique

combination of primer barcode and index sequences. This workflow demonstrates how to analyze a single

replicate; the workflow can be parallelized on distributed computing architectures (e.g. slurm).

protocols.io | https://dx.doi.org/10.17504/protocols.io.xwjfpcn October 25, 2019 2/10

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.xwjfpcn

Materials

The following external programs are required:

cutadapt (≥ 1.16)

samtools (≥ 1.9)

You will need a genomic aligner. Here we will use novoalign, but in theory any aligner should be sufficient (e.g.

bowtie2, GATK, STAR, etc.). Also, you will need a .2bit version of the genome sequence you are aligning to; these

are readily available from the UCSC Genome Browser. (They can also be generated from a FASTA file using the

faToTwoBit utility)

The following programs are optional, but highly recommended:

bedtools (≥ 2.27)

bedops (≥ 2.4)

In addition, this workflow calls some calling card-specific scripts, which use Python 3. It is recommended that

your Python installation be relatively up-to-date (i.e. ≥ 3.4). To check your python version, type

You will need to install the following Python modules:

numpy

pandas

pysam

twobitreader

All of these packages are available on PyPI and can be installed via pip:

(If Python3 is not the default on your system, replace pip with pip3)

Finally, these are the calling card-specific scripts you will need, all of which are available on GitHub:

TagBam.py

AnnotateInsertionSites.py

BamToCallingCard.py

python -V

pip install numpy pandas pysam twobitreader

protocols.io | https://dx.doi.org/10.17504/protocols.io.xwjfpcn October 25, 2019 3/10

https://cutadapt.readthedocs.io/en/stable/
https://samtools.github.io/
http://hgdownload.soe.ucsc.edu/downloads.html
http://hgdownload.soe.ucsc.edu/downloads.html#source_downloads
https://bedtools.readthedocs.io/en/latest/
https://bedops.readthedocs.io/en/latest/
https://www.numpy.org/
https://pandas.pydata.org/
http://pysam.readthedocs.io/
https://pythonhosted.org/twobitreader/
https://github.com/arnavm/calling_cards
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.xwjfpcn

Before start

Please make sure you have installed the required software and packages (see Materials section).

This protocol describes how to analyze a SINGLE biological replicate from a bulk RNA calling cards* experiment.

Multiple replicates (e.g. 10-12) should be analyzed in each experiment to distinguish independent transposition

events into the same insertion site. This is essential for adequate statistical power to detect transcription factor

binding sites. Each replicate can be processed following this protocol, making appropriate changes to the primer

barcode sequence and/or the index sequence(s). Data from multiple calling card replicates can be pooled at the

end into a single file.

*If you are unfamiliar with calling card libraries, we recommend reading our quick start guide and our library

preparation protocol.

protocols.io | https://dx.doi.org/10.17504/protocols.io.xwjfpcn October 25, 2019 4/10

https://protocols.io/view/mammalian-calling-cards-quick-start-guide-xurfnv6
https://protocols.io/view/bulk-calling-cards-library-preparation-xwhfpb6
https://protocols.io/view/bulk-calling-cards-library-preparation-xwhfpb6
https://protocols.io/view/bulk-calling-cards-library-preparation-xwhfpb6
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.xwjfpcn

1 The objective of this protocol is to take sequencing reads from a calling cards library and

process them into a CCF (calling card format; .ccf) file. A CCF file is a modified BED file

(BED3+3) that concisely enumerates every transposition event in the sequenced library.

CCF files typically have six columns:

1. chrom: chromosome

2. start: beginning coordinate of the insertion site

3. end: ending coordinate of the insertion site; since piggyBac inserts into TTAA's, this

typically spans the motif itself.

4. count: the number of reads supporting this insertion

5. strand: + or -, indicating which strand was targetted (optional but highly

recommended)

6. barcode: a string identifying the library from which this insertion originated (optional

but highly recommended)

This workflow will walk through how to perform quality control, alignment, filtering, and

processing of calling card sequencing libraries to generate a CCF file. This file can then

be used in downstream applications, such as visualization on the (legacy) WashU

Epigenome Browser (instructions here), and as input for peak calling.

2 To illustrate the workflow, let's say that we have performed bulk RNA calling cards on our

favorite transcription factor (YFTF) in a human cell line. We have prepared libraries from

10 biological replicates of cells transfected with wild-type piggyBac transposase, and 10

replicates of cells with YFTF-piggyBac. We have sequenced these libraries and now

need to map these insertions across the genome.

We will consider a single replicate; the workflow can then be repeated for all remaining

replicates. At the end we can combine the data from the 10 piggyBac replicates, and the

10 YFTF-piggyBac replicates, respectively, into a single CCF file each.

3 In this example, we will be analyzing a single replicate from the wild-type piggyBac

libraries: PBase_rep1. The read 1 sequencing file is PBase_rep1_L001_R1_001.fastq.gz

This biological replicate had GAT as its primer barcode and CTCACGGTGA as its index

sequence. It was prepared by PCR ligation with the following primers:

Note

For bulk RNA calling card libraries, only read 1 is analyzed, as it contains the junction
between the transposon and genome.

Preamble

protocols.io | https://dx.doi.org/10.17504/protocols.io.xwjfpcn October 25, 2019 5/10

http://epigenomegateway.wustl.edu/legacy/
http://epigenomegateway.wustl.edu/legacy/
http://epigenomegateway.wustl.edu/legacy/
http://wiki.wubrowse.org/Calling_card
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.xwjfpcn

>OM-PB-GAT (barcode in bolded)

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTGAT

TTTACGCAGACTATCTTTCTAG

>Nextera_N7_CTCACGGTGA (index in bold; note the reverse complement orientation)

CAAGCAGAAGACGGCATACGAGATTCACCGTGAGGTCTCGTGGGCTCGG

Thus, each read 1 should begin with GATTTTACGCAGACTATCTTTCTAG.

4 The purpose of this step is to check that reads have (1) the appropriate primer barcode

sequence and (2) the transposon sequence is correct and ends in TTAA, piggyBac's

insertion motif. If these conditions are true, those bases are trimmed (hard clipped), to

facilitate genomic alignment. Only reads with perfect matches to the barcode and

transposon sequence are carried forward.

Typically 70-90% of reads will pass this filter, although there may be sample-dependent

variation.

cutadapt \
 -g ^GATTTTACGCAGACTATCTTTCTAGGGTTAA \
 --minimum-length 1 \
 --discard-untrimmed \
 -e 0 \
 --no-indels \
 -o PBase_rep1_trimBC.fastq.gz \
 PBase_rep1_L001_R1_001.fastq.gz

5 Next, we re-examine the passing reads and trim any reads that end in the Nextera

adapter that was added during tagmentation. This step reduces the amount of non-

genomic bases, which should accelerate alignment. Only a small fraction (5-10%)

typically have any adapter sequence at all, so virtually every read will pass this filter.

The index sequence has been emphasized in bold, but if you are processing libraries

with many index different indexes, you can replace the bolded sequence with N's

cutadapt \
 -a
CTGTCTCTTATACACATCTCCGAGCCCACGAGACTCTCACGGTGATCTCGTATGCCGTCTTCTGCT
TG \
 --minimum-length 1 \
 -o PBase_rep1_trimmed.fastq.gz \
 Base_rep1_trimBC.fastq.gz

Adapter Trimming

protocols.io | https://dx.doi.org/10.17504/protocols.io.xwjfpcn October 25, 2019 6/10

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.xwjfpcn

(keeping the length same). cutadapt can handle degenerate bases in adapters.

6 Now that our reads are trimmed, we are ready to align them to the genome. This step can

be done with any aligner; we typically use novoalign, so that is what we will demonstrate

here.

The "-n 40" flag tells novoalign to align only the first 40 bases of the read. We have

found that this reduction can increase the speed of alignment with minimal impact on

total number of insertions recovered. Faster aligners (e.g. bowtie2, GATK, STAR) may not

need this setting.

novoalign \
 -d hg38.nvx \
 -f PBase_rep1_trimmed.fastq.gz \
 -n 40 \
 -o SAM \
 -o SoftClip > PBase_rep1_trimmed.sam

7 After alignment, we filter out reads that mapped to multiple locations in the genome (e.g.

in a repetitive element) and convert to the more space-efficient BAM format.

samtools view \
 -bS -h -F 260 \
 PBase_rep1_trimmed.sam | \
 samtools sort - -o PBase_rep1_mapped.bam

8 The BAM format provides a flexible way to annotate reads through the use of short tags.

These tags remain with the reads in the BAM file, which makes for a simple and portable

archive of a calling card experiment. We use the following custom tags:

XP: primer barcode

XJ: index 1 sequence

XK: index 2 sequence (optional; reserved for future use)

XI: insertion site annotation

XZ: adjacent sequence (to verify transposase motif)

9 First, we will annotate reads with the XP tag for the primer barcode GAT.

Alignment

Annotation

protocols.io | https://dx.doi.org/10.17504/protocols.io.xwjfpcn October 25, 2019 7/10

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.xwjfpcn

python TagBam.py \
 --tag XP:Z:GAT \
 PBase_rep1_mapped.bam \
 PBase_rep1_tagged.bam

10 Next, we will annotate reads with the XJ tag for the index sequence CTCACGGTGA.

python TagBam.py \
 --tag XJ:Z:CTCACGGTGA \
 PBase_rep1_tagged.bam \
 PBase_rep1_tagged2.bam

11 Lastly, we will annotate reads with respect to the insertion site. This script checks each

read to make sure that it maps next to the piggyBac insertion site motif TTAA. Remember,

this part of read 1 was trimmed in step 4. By double checking that the read maps next to

a genomic TTAA, we add an extra layer of specificity to the alignment. The sequence of

the adjacent bases will also be annotated with the XZ tag. Reads that pass will be

annotated with the insertion site coordinates in the XI tag and written to the output file.

You can provide a path to the .2bit file if your genome references are in another

directory.

python AnnotateInsertionSites.py \
 --transposase PB \
 -f \
 PBase_rep1_tagged2.bam \
 hg38.2bit \
 PBase_rep1_final.bam

12 To finish, we first index the BAM file.

samtools index PBase_rep1_final.bam

13 Next, clean up intermediate files.

Finishing Up

protocols.io | https://dx.doi.org/10.17504/protocols.io.xwjfpcn October 25, 2019 8/10

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.xwjfpcn

rm PBase_rep1_trimBC.fastq.gz
rm PBase_rep1_trimmed.fastq.gz
rm PBase_rep1_trimmed.sam
rm PBase_rep1_mapped.bam
rm PBase_rep1_tagged.bam
rm PBase_rep1_tagged2.bam

14 Lastly, convert the BAM file to a CCF file.

This will use the combination of primer barcode and index sequence (XP and XJ,

respectively) to identify insertions derived from different biological replicates.

Here is an example of a CCF file:

python BamToCallingCard.py \
 -b XP XJ \
 -i PBase_rep1_final.bam \
 -o PBase_rep1_final.ccf

chr1 28575 28579 2 + GCA/TCGCCACCC
chr1 28575 28579 10 + TAG/GAGGTACAG
chr1 28575 28579 1 + GAT/GAGGTACAG
chr1 31191 31195 1 + GCA/TCGCCACCC
chr1 31191 31195 49 + TAG/TCGCCACCC
chr1 46620 46624 5 + CTA/GAGGTACAG
chr1 54136 54140 42 - GCA/TCGCCACCC
chr1 54818 54822 16 - CTA/TCGCCACCC
chr1 57829 57833 6 - CGT/GAGGTACAG
chr1 58414 58418 40 + CTA/TCGCCACCC

15 This workflow described how to process a SINGLE biological replicate. After each

replicate has been processed, CCF files can be combined to consolidate all insertions

from a given experiment. For example, to combine data from all replicates from our wild-

type piggyBac libraries, we can use cat and bedops (preferred):

Notes

protocols.io | https://dx.doi.org/10.17504/protocols.io.xwjfpcn October 25, 2019 9/10

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.xwjfpcn

Similarly, CCFs from the YFTF replicates can be combined:

The concatenated CCF files can also be sorted using bedtools:

Or, using the standard shell sort command:

cat \
PBase_rep1_final.ccf \
PBase_rep2_final.ccf \
PBase_rep3_final.ccf \
PBase_rep4_final.ccf \
PBase_rep5_final.ccf \
PBase_rep6_final.ccf \
PBase_rep7_final.ccf \
PBase_rep8_final.ccf \
PBase_rep9_final.ccf \
PBase_rep10_final.ccf | sort-bed - > PBase.ccf

cat YFTF-PBase_rep*_final.ccf | sort-bed - > YFTF-PBase.ccf

cat PBase_rep*_final.ccf | bedtools sort -i - > PBase.ccf

cat PBase_rep*_final.ccf | sort -k1V -k2n -k3n > PBase.ccf

16 Analogously, we can combine BAM files from biological replicates into a single archival-

quality BAM file for an entire experiment:

samtools merge PBase.bam PBase_rep*_final.bam

17 Ideally, each biological replicate will have a unique primer barcode AND unique index

sequence. However, sometimes this is not possible. If so, each replicate should be

identifiable from a unique combination of primer barcode and index sequence. If multiple

replicates share an index, their reads will be found in the same FASTQ file. This is okay

as step 3 can separate each replicate based on an exact match to the primer barcode

sequence. In that case, you will have to provide the same input file to step 4 multiple

times, each with a different primer barcode at the start of the adapter.

protocols.io | https://dx.doi.org/10.17504/protocols.io.xwjfpcn October 25, 2019 10/10

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.xwjfpcn

