Oct 20, 2020 Version 1

Oprime-seq V.1

In 1 collection

DOI

dx.doi.org/10.17504/protocols.io.s9veh66

Aleksandar Janjic¹, Lucas Esteban Wange¹, Johannes JWB Bagnoli¹, Johanna Geuder¹, Phong Nguyen¹, Daniel Richter¹, Christoph Ziegenhain², Wolfgang Enard¹

¹Ludwig-Maximilians-Universität München; ²Karolinska Institute Stockholm

Aleksandar Janjic

Ludwig-Maximilians-Universität München

DOI: dx.doi.org/10.17504/protocols.io.s9veh66

External link: <u>https://doi.org/10.1038/s41598-021-82883-0</u>

Protocol Citation: Aleksandar Janjic, Lucas Esteban Wange, Johannes JWB Bagnoli, Johanna Geuder, Phong Nguyen, Daniel Richter, Christoph Ziegenhain, Wolfgang Enard 2020. prime-seq. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.s9veh66

Manuscript citation:

Janjic, A., Wange, L.E., Bagnoli, J.W.*et al.*Prime-seq, efficient and powerful bulk RNA sequencing. *Genome Biol***23**,88 (2022). <u>https://doi.org/10.1186/s13059-022-02660-8</u>

License: This is an open access protocol distributed under the terms of the **<u>Creative Commons Attribution License</u>**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: September 05, 2018

Last Modified: October 20, 2020

Protocol Integer ID: 15381

Keywords: bulk RNA sequencing, RNA-seq, transcriptomics, SCRB-seq

Disclaimer

DISCLAIMER - FOR INFORMATIONAL PURPOSES ONLY; USE AT YOUR OWN RISK

The protocol content here is for informational purposes only and does not constitute legal, medical, clinical, or safety advice, or otherwise; content added to **protocols.io** is not peer reviewed and may not have undergone a formal approval of any kind. Information presented in this protocol should not substitute for independent professional judgment, advice, diagnosis, or treatment. Any action you take or refrain from taking using or relying upon the information presented here is strictly at your own risk. You agree that neither the Company nor any of the authors, contributors, administrators, or anyone else associated with **protocols.io**, can be held responsible for your use of the information contained in or linked to this protocol or any of our Sites/Apps and Services.

Abstract

prime-seq is a simple and open RNA-seq method, which can be easily established in most research labs or facilities. Based on two of the most sensitive single cell RNA-seq methods available, namely smart-seq2 and mcSCRB-seq (Picelli et al. 2013; Bagnoli et al. 2018), prime-seq is an adaptable, affordable, robust, and high-throughput option. Additionally, prime-seq can be used on a wide range of model organisms, from apes to zebrafish, and many in between.

Guidelines

- All reagents and plastic-ware can be found in the 'Materials' section.
- Use only RNase free supplies and clean all surfaces and tools with RNase Away prior to working
- Make sure all steps involving cell lysate and RNA before reverse transcription are carried out swiftly and on ice.
- All primer sequences are listed below:

Oligo	Vendo r	Purificati on	Workin g Conc.	Sequence	Note s
Barcoded Oligo- dT (E3V7NEXT)	Sigma	Cartridge	10 µM	ACACTCTTTCCCTACACGAC GCTCTTCCGATCT[12 bp BC]NNNNNNNNNNNNNN TTTTTTTTTTTTTTTTTTTTT TTTTTT	
Template Switching Oligo (TSO) (E5V7NEXT)	Sigma	RNase- Free HPLC	100 µM	Biotin- ACACTCTTTCCCTACACGAC GCrGrGrG	
Preamp Primer (SINGV6)	Sigma	Standard Desalting	10 µM	Biotin- ACACTCTTTCCCTACACGAC GC	
3' enrichment primer (P5NEXTPT5)	Sigma	Standard Desalting	5 μΜ	AATGATACGGCGACCACCGA GATCTACACTCTTTCCCTACA CGACGCTCTTCCGATCT	
i7 Index Primer (N7XX)	IDT	Trugrade	5 μΜ	CAAGCAGAAGACGGCATACG AGAT[i7]GTCTCGTGGGCTCG G	
prime-seq Adapter AntiSense	IDT	Standard Desalting	1.5 μM	/5Phos/CTGTCTCTTATACAC ATCT	Duple xed DNA
prime-seq Adapter Sense	IDT	Standard Desalting	1.5 μM	GTCTCGTGGGCTCGGAGATG TGTATAAGAGACAGT	Duple xed DNA

Specific barcoded oligodT (E3V7NEXT) sequences:

E3V7_Set1.txt

E3V7_Set2.txt

Materials

MATERIALS

- X DNase I Reaction Buffer 6.0 ml New England Biolabs Catalog #B0303S
- X DNase I (RNase-free) 1,000 units New England Biolabs Catalog #M0303S
- X Deoxynucleotide Solution Mix 40 umol of each New England Biolabs Catalog #N0447L
- 🔀 Exonuclease I (E.coli) 3,000 units New England Biolabs Catalog #M0293S
- X Quant-it[™] PicoGreen[®] dsDNA Assay Kit Life Technologies Catalog #P7589
- **Β** -mercaptoethanol Merck MilliporeSigma (Sigma-Aldrich) Catalog #M3148
- 🔀 QuantiFluor(R) RNA System Promega Catalog #E3310
- 🔀 Proteinase K solution, 20 mg ml 1 Ambion Catalog #AM2546
- 8 5 M Sodium chloride (NaCl) Merck MilliporeSigma (Sigma-Aldrich) Catalog #S5150-1L
- X Agilent High Sensitivity DNA Kit Agilent Technologies Catalog #5067-4626
- Buffer RLT Plus Qiagen Catalog #1053393
- X Maxima H Minus Reverse Transcriptase (200 U/uL) Thermo Fisher Scientific Catalog #EP0752
- NEBNext Ultra II FS DNA Library Prep with Sample Purification Beads 24 rxns New England Biolabs Catalog #E6177S
- 88 EDTA Merck MilliporeSigma (Sigma-Aldrich) Catalog #E7889
- X Ethanol absolute Carl Roth Catalog #9065.4
- 8896 Igepal Merck MilliporeSigma (Sigma-Aldrich) Catalog #18896
- 🔀 KAPA HiFi 2x RM Kapa Biosystems Catalog #KR0370
- X Poly(ethylene glycol) Merck MilliporeSigma (Sigma-Aldrich) Catalog #89510
- X UltraPure DNase/RNase Free Distilled Water Catalog #10977-049
- X Trizma hydrochloride solution Merck MilliporeSigma (Sigma-Aldrich) Catalog #T2694
- X Aluminium seals for cold storage Catalog #391-1275
- X Filter tips 96 low retention 10 uL Catalog #771265
- X PCR Seals Thermo Scientific Catalog #AB0558
- X twin.tec 96-well DNA LoBind Plates Eppendorf Catalog #0030129504
- 🔀 Sera-Mag Speed Beads GE Healthcare Catalog #65152105050250
- Sodium Azide Merck MilliporeSigma (Sigma-Aldrich) Catalog #S2002-100G
- 🔀 NEBNext Ultra II FS DNA Library Prep Kit for Illumina New England Biolabs Catalog #E7805S

Safety warnings

Please follow all Manufacturer safety warnings and recommendations.

Before start

Wipe bench surfaces with RNAse Away and keep working environment clean.

Preparation

- 1 Clean all surfaces and pipettes with RNase Away.
- 2 Thaw frozen buffers and primers on ice.
- 3 Prepare 80% EtOH (approximately 45 mL for 96 samples)

Prepare Cleanup Beads (22% PEG)

4 Prepare **PEG Solution (22%)** by adding all ingredients to a 50 mL falcon tube

	Reagent	Amount
Γ	PEG 8000	11 g
Γ	NaCI (5M)	10 mL
	Tris-HCI (1M, pH 8.0)	500 μL
Γ	EDTA (0.5M)	100 μL
	IGEPAL (10% solution)	50 μL
	Sodium Azide (10% solution)	250 μL
	UltraPure Water	up to 49 mL
	Total	49 mL

Note

Do not add the total amount of water until after PEG is completely solubilized

Incubate at 40 °C and vortex regularly until PEG is completely dissolved

10m

12m

5m

10m

2m

10m

6	Resuspend Sera-Mag Speed Beads carefully and pipette $\boxed{_1000 \ \mu L}$ of bead suspension into a 1.5 mL tube	1m
7	Place on magnet stand and remove storage buffer	1m
8	Add \blacksquare 1000 µL of TE Buffer (10 mM Tris-HCI, pH 8.0, 1 mM EDTA) and resuspend beads	30s
9	Place on magnet stand and remove supernatant	30s
10	Repeat wash step one more time	1m
11	Add $\boxed{4}$ 900 µL TE Buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA) and resuspend beads	30s
12	Add the washed Sera-Mag Speed Beads to the PEG Solution (22%) and mix well Note The final Cleanup Beads (22% PEG) can be aliquoted and stored at * 4 °C for up to six months	1m 30s
13 Lvsa	prime-seq can be used on lysate or extracted RNA. It is essential, however, that the samples either have the same input or that they are normalized after the RNA is extracted, otherwise sequencing depth per sample will be impacted. Based on your starting material, please follow one of the following cases: STEP CASE ate (similar input) 96 steps	

Follow this case if you are testing samples that have **similar input** (i.e. the expected RNA amount is the same between samples). The steps here will guide you in digesting residual proteins in your samples, extracting the RNA, digesting DNA, preparing RNA-seq libraries, and finally sequencing.

Example: investigating the genotype effect on transcription in 5,000 neurons

Prepare Bead Binding Buffer

14 Prepare Bead Binding Buffer (2x)

Reagent	
PEG 8000	1.1 g
NaCI (5 M)	1 mL
Tris-HCI (1 M, pH 8.0)	50 μL
Igepal (10% solution)	5 μL
Sodium Azide (10% solution)) 25 μL
H2O	to 5 mL
Total	5 ml

Note

The **Bead Binding Buffer (2x)** can be stored at **Solution** Room temperature for up to six months.

Sample Collection

15 Prepare Lysis Buffer according to the number of samples.

	Reagent	Well	Plate
Γ	RLT Plus Buffer	99 µL	10.89 mL
	β- mercaptoethanol	1μL	110 µL
	Total	100 μL	11 mL

Note

If sample volume exceeds 25 % of total lysate, use 2x TCL buffer (Qiagen, #1070498) + 1 % β -mercaptoethanol

10m

10m

2m

16 Add \angle 100 µL of **Lysis Buffer** to each well of a semi-skirted 96-well PCR plate

17 Add cells or tissue to wells

Note

Cells

Minimum: 100 cells, Optimum: 10,000 cells

Make sure that the same number of cells are used for each sample. Large differences between cells will impact distribution of sequencing reads and can potentially affect normalization.

Note

Tissue

If samples are difficult to lyse they should be homogenized using a tissue homogenizer.

Tissue should be a relatively small and not exceed more than 1000 ng of RNA. Tissue samples should be normalized by weight and be the same type of tissue.

Large differences between tissue samples will impact distribution of sequencing reads and can potentially affect normalization.

If you are unsure if the samples will contain the same amount of RNA, it is best to switch to the "*Lysate (variable)*" case in Step 13.

18 Transfer Δ 50 µL of **lysate** to a new plate, return one plate immediately to -80 C freezer to save as a backup

Note

Conversely, one can prepare two plates during sorting with 50 µL of lysis buffer.

Prot	teinase K Digest	30m
19	Add \blacksquare 1 µL Proteinase K (20 mg/mL) and \blacksquare 1 µL EDTA (25 mM) to each well	1m
20	Incubate for 😒 00:15:00 at 🕻 50 °C and then heat inactivate the Proteinase K for	25m
Bea	d Clean Up	20m
21	Mix each bulk sample (50 µL per well) with ▲ 100 µL of Cleanup Beads (22% PEG) Incubate for ① 00:05:00 at ② 20 °C (Room Temp) Note While binding, prepare DNase I Mix (Step 28)	1m 5m
23	Place on magnet stand until clear (~3 min) and then discard supernatant	3m
24	Wash with $2 100 \ \mu L$ of 80% EtOH while the plate is on the magnet. Discard the supernatant	2m
25	Repeat wash step once more	2m
26	Air dry beads for 👀 00:03:00	3m

ReagentWellPlateDNase I $1 \mu L$ $110 \mu L$ DNase I Buffer (10x) $2 \mu L$ $220 \mu L$ Bead Binding Buffer (2x) $10 \mu L$ $1.1 m L$ H2O $2 \mu L$ $220 \mu L$ Total $15 \mu L$ 1.65	DNase I1 μ L110 μ LDNase I Buffer (10x)2 μ L220 μ LBead Binding Buffer (2x)10 μ L1.1 mLH2O2 μ L220 μ L	If you encounter bead clumping at this step, try to resuspend the beads by vigorously pipetting the samples. We have generated high quality prime-seq libraries despite heavy clumping. 28 Prepare DNase I Mix Reagent Well Plate DNase I 1 µL 110 µL DNase I Buffer (10x) 2 µL 220 µL Bead Binding Buffer 10 µL 1.1 mL H2O 2 µL 220 µL	 Add ▲ 5 μL H2O and resuspend beads by vortexing vigorously Note If you encounter bead clumping at this step, try to resuspend the beads by vigorously pipetting the samples. We have generated high quality prime-seq libraries despite heavy clumping. Prepare DNase I Mix Meagent Vell Plate DNase I Buffer (10x) 2 μL 220 μL Bead Binding Buffer 10 μL 11 mL H2O 2 μL 220 μL H2O 4 20 μL 	Note If you encounter bead clumping at this step, try to resuspend the beads by vigorously pipetting the samples. We have generated high quality prime-seq libraries despite heavy clumping. 28 Prepare DNase I Mix <u>Reagent</u> <u>DNase I 1 µL</u> <u>DNase I 8uffer (10x) 2 µL</u> <u>220 µL</u> <u>H20</u> <u>I 1 µL</u> <u>I 10 µL</u> <u>I 1 mL</u> <u>H20</u> <u>I 1 µL</u> <u>I 10 µL</u> <u>I 1 mL</u>
DNase I1 μL110 μLDNase I Buffer (10x)2 μL220 μLBead Binding Buffer (2x)10 μL1.1 mL	If you encounter bead clumping at this step, try to resuspend the beads by vigorously pipetting the samples. We have generated high quality prime-seq libraries despite heavy clumping. 28 Prepare DNase I Mix Reagent Well Nase I Multiple DNase I Multiple Bead Binding Multiple	Note If you encounter bead clumping at this step, try to resuspend the beads by vigorously pipetting the samples. We have generated high quality prime-seq libraries despite heavy clumping. 28 Prepare DNase I Mix Image: The second state of the second state o	 27 Add ▲ 5 μL H2O and resuspend beads by vortexing vigorously Note If you encounter bead clumping at this step, try to resuspend the beads by vigorously pipetting the samples. We have generated high quality prime-seq libraries despite heavy clumping. 28 Prepare DNase I Mix Nase I Mix Nase I Buffer (10x) 2 μL 220 μL Bead Binding Buffer 10 μL 1.1 mL	important to regularly check the beads and avoid over-drying. DNAse I Digest 27 Add
DNase I 1 μL 110 μL DNase I Buffer (10x) 2 μL 220 μL	If you encounter bead clumping at this step, try to resuspend the beads by vigorously pipetting the samples. We have generated high quality prime-seq libraries despite heavy clumping. 28 Prepare DNase I Mix Reagent Vell Plate DNase I 1 μL DNase I 8 μffer (10x) 2 μL 220 μL	Note If you encounter bead clumping at this step, try to resuspend the beads by vigorously pipetting the samples. We have generated high quality prime-seq libraries despite heavy clumping. 28 Prepare DNase I Mix <u>Reagent</u> <u>Well</u> <u>Plate</u> <u>DNase I Buffer (10x)</u> 2 μL 220 μL	 Add ▲ 5 μL H2O and resuspend beads by vortexing vigorously Note If you encounter bead clumping at this step, try to resuspend the beads by vigorously pipetting the samples. We have generated high quality prime-seq libraries despite heavy clumping. Prepare DNase I Mix Neagent Vell Plate DNase I 1 μL 110 μL DNase I Buffer (10x) 2 μL 220 μL 	important to regularly check the beads and avoid over-drying. DNAse I Digest 27 Add ▲ 5 μL H2O and resuspend beads by vortexing vigorously Note If you encounter bead clumping at this step, try to resuspend the beads by vigorously pipetting the samples. We have generated high quality prime-seq libraries despite heavy clumping. 28 Prepare DNase I Mix
	28 Prepare DNase I Mix Reagent Well	Note If you encounter bead clumping at this step, try to resuspend the beads by vigorously pipetting the samples. We have generated high quality prime-seq libraries despite heavy clumping. 28 Prepare DNase I Mix Reagent Well Plate	 Add ▲ 5 µL H2O and resuspend beads by vortexing vigorously Note If you encounter bead clumping at this step, try to resuspend the beads by vigorously pipetting the samples. We have generated high quality prime-seq libraries despite heavy clumping. Prepare DNase I Mix Reagent Well Plate 	important to regularly check the beads and avoid over-drying. DNAse I Digest 27 Add ▲ 5 μL H2O and resuspend beads by vortexing vigorously Note If you encounter bead clumping at this step, try to resuspend the beads by vigorously pipetting the samples. We have generated high quality prime-seq libraries despite heavy clumping. 28 Prepare DNase I Mix Nete
Reagent Well Plate	If you encounter bead clumping at this step, try to resuspend the beads by vigorously pipetting the samples. We have generated high quality prime-seq libraries despite heavy clumping. 28 Prepare DNase I Mix	Note If you encounter bead clumping at this step, try to resuspend the beads by vigorously pipetting the samples. We have generated high quality prime-seq libraries despite heavy clumping. 28 Prepare DNase I Mix	 Add ▲ 5 µL H2O and resuspend beads by vortexing vigorously Note If you encounter bead clumping at this step, try to resuspend the beads by vigorously pipetting the samples. We have generated high quality prime-seq libraries despite heavy clumping. Prepare DNase I Mix 	important to regularly check the beads and avoid over-drying. DNAse I Digest 27 Add ▲ 5 μL H2O and resuspend beads by vortexing vigorously Note If you encounter bead clumping at this step, try to resuspend the beads by vigorously pipetting the samples. We have generated high quality prime-seq libraries despite heavy clumping. 28 Prepare DNase I Mix
	If you encounter bead clumping at this step, try to resuspend the beads by vigorously pipetting the samples. We have generated high quality prime-seq libraries despite heavy clumping.	Note If you encounter bead clumping at this step, try to resuspend the beads by vigorously pipetting the samples. We have generated high quality prime-seq libraries despite heavy clumping.	Add ▲ 5 µL H2O and resuspend beads by vortexing vigorously Note If you encounter bead clumping at this step, try to resuspend the beads by vigorously pipetting the samples. We have generated high quality prime-seq libraries despite heavy clumping.	important to regularly check the beads and avoid over-drying. DNAse I Digest 27 Add ▲ 5 µL H2O and resuspend beads by vortexing vigorously Note If you encounter bead clumping at this step, try to resuspend the beads by vigorously pipetting the samples. We have generated high quality prime-seq libraries despite heavy clumping.

29 Resuspend beads in $\boxed{4}$ 15 μ L of **DNase I Mix**

30 Incubate DNase I Mix and beads for 👏 00:10:00 at 🖁 20 °C (Room Temp)

2m

31	Heat inactivate the DNase I by adding $\boxed{I \ \mu L}$ of EDTA (100 mM) and incubating for $\bigcirc 00:05:00$ at $\boxed{65 \ \circ C}$	6m
32	Place plate on magnet stand until clear (~3 min) and discard the supernatant.	3m
33	Wash with $\boxed{100 \ \mu L}$ of 80% EtOH while the plate is on the magnet. Discard the supernatant	2m
34	Repeat wash step once more	2m
35	Air dry beads for 👏 00:05:00	5m
	Note	
	Depending on temperature and humidity, the beads may dry faster. Therefore it is important to regularly check the beads and avoid over-drying.	
	Note	
	While drying, prepare Reverse Transcription Mix (Step 36).	

Reverse Transcription

5m

5m

36 Prepare **Reverse Transcription Mix**

	Reagent	Well	Plate
Γ	Maxima H Minus RT	0.15 μL	16.5 μL
	Maxima RT Buffer (5x)	2 μL	220 µL
	dNTPs (25 mM)	0.4 μL	44 μL
	TSO (E5V7NEXT) (100 uM)	0.1 μL	11 µL
	UltraPure Water	2.35 μL	258.5 μL

	Total	5 μL	550 μL	
37	Add 4 μL H2O			1m
	Note			
	The 4 μL of water can be co water in Row 6 from 2.35 μL		ith the Reverse Transcription Mix by increasing the 	
			ng a stepper pipette or robot, we find that it is betton nt the beads from drying too much.	er
38	Add $4 5 \mu L$ Reverse Trans	scription	Mix	1m
39	Add $\boxed{1}$ μ L of Barcoded o	ligodT (E	3V7NEXT) (10 μM) per well	2m
40	Incubate for 🕥 01:30:00 a	t 🖁 42 °	C	1h 30m
cDN	IA Pooling & Purification	ı		5m
41	Place the plate on a magnet			3m
42	Pool all wells of one plate into	o a 2 mL t	ube	10m
43	Add $\boxed{10 \ \mu L}$ of Cleanup B for 24 samples)	eads (22	% PEG) <i>for each sample</i> for a 1:1 ratio (e.g. 240) μL 5m
	Note			
	The EDTA in the Cleanup Bea due to the color.	ads (22%	PEG) will inactivate the RT and make pooling easie	r

44	Incubate for 👀 00:05:00 at Room temperature to allow binding of the cDNA onto beads	5m
45	Place the tube on the magnet stand until clear (~3 min) and discard supernatant	3m
46	Wash with 4 1 mL of 80% EtOH while the tube is on the magnet. Discard the supernatant	1m
	Note	
	Volume of EtOH should be adjusted depending on the number of samples. More samples will require more EtOH to cover the beads completely.	
47	Repeat wash step once more	1m
48	Air dry beads for 00:05:00	5m
	Note	
	Depending on temperature and humidity, the beads may dry faster. Therefore it is important to regularly check the beads and avoid over-drying.	
49	Elute the beads in 17 μL of UltraPure Water	1m
50	Incubate for O0:05:00 at RT and transfer to a new PCR tube or plate	5m
Exo	nuclease I Treatment	35m
51	Add $\underline{\square}$ 2 μ L of Exol Buffer (10x) and $\underline{\square}$ 1 μ L of Exonuclease I . Incubate as follows:	35m

Step	Temperature	Time
Incubation	37 C	20 min
Heat Inactivation	80 C	10 min
Storage	4 C	∞

52	Mix each sample (20 μ L per well) with $\boxed{4}$ 16 μ L of Cleanup Beads (22% PEG) for a 1:0.8 ration	1m
53	Incubate for 🕑 00:05:00 at 🖁 Room temperature to allow binding of the cDNA onto beads	5m
54	Place the tube on the magnet stand until clear (~3 min) and discard supernatant	3m
55	Wash with $\boxed{4}$ 50 µL of 80% EtOH while the tube is on the magnet. Discard the supernatant	1m
56	Repeat wash step once more	1m
57	Air dry beads for 👀 00:05:00	5m
	Note	
	Depending on temperature and humidity, the beads may dry faster. Therefore it is important to regularly check the beads and avoid over-drying.	
58	Elute the beads in $\boxed{20 \ \mu L}$ of UltraPure Water	1m
59	Incubate for 00:05:00 at RT and transfer to a new PCR tube or plate	5m
Full	length cDNA Amplification	1m

60 Prepare **Pre Amplification Mix**

	Reagent	1x
	KAPA HiFi 2x RM	25 µL
	Pre-amp Primer (SINGV6) (10 uM)	3 μL
_	UltraPure Water	2 µL
_	Total	30 µL

- 61
- Add $\boxed{4}$ 30 μ L **Pre Amplification Mix** to sample
- 62 Incubate the Pre Amplification PCR as follows:

Step	Temperatur e	Time	Cycles
Initial Denaturation	98 C	3 min	1 cycle
Denaturation	98 C	15 sec	10 cycles*
Annealing	65 C	30 sec	
Elongation	72 C	4 min	
Final Elongation	72 C	10 min	1 cycle
Storage	4 C	∞	

1m

Adjust the number of cycles based on input (sample number, cell number, or concentration).

As a rule of thumb we assume big cells like embryonic stem cells to contain 10 pg of total RNA and small cells like T-cells \sim 1-2 pg

As a general guide we recommend:

	Total RNA Input	Cycle s
	10 ng	16
Γ	50 ng	14
Γ	100 ng	12
Γ	500 ng	10
	1000 ng	9

cDN	A Bead Purification	1m
63	Mix sample with $40 \ \mu L$ Clean Up Beads (22% PEG) for a ratio of 1:0.8	1m
64	Incubate for 🚫 00:05:00 at 🕻 20 °C (Room Temp)	5m
65	Place the tube on the magnet stand until clear (~3 min) and discard supernatant	3m
66	Wash with $\boxed{100 \ \mu L}$ of 80% EtOH while the tube is on the magnet. Discard the supernatant	1m
67	Repeat wash step once more	1m
68	Air dry beads for 00:05:00	5m

	Note	
	Depending on temperature and humidity, the beads may dry faster. Therefore it is important to regularly check the beads and avoid over-drying.	
69	Elute cDNA in 📕 10 µL UltraPure Water	1m
70	Incubate for 👏 00:05:00 at RT and transfer to a new PCR tube or plate	5m
	Note	0
	Stopping Point. Samples can be safely stored at & -20 °C and protocol can be continued at a later date.	
cDN	IA Quantification and Quality Check	45m
71	Quantify the cDNA using the Quant-iT PicoGreen dsDNA assay kit or equivalent Qubit following the manufacturer's protocol. Use 1 μ l of clean cDNA for quantification.	10m
72	Quality check the cDNA using the Agilent 2100 Bioanalyzer with High Sensitivity DNA Analysis Kits .	45m
72	, , , , ,	45m
72	Analysis Kits.	45m
72	Analysis Kits. Note Passing the cDNA quality check does not guarantee that the data will be of high quality, however, if the cDNA fails the quality check it will usually not yield good libraries and will	45m

Library Preparation

73

Note

Before starting, read the library preparation section carefully as there are a few steps that are very time sensitive.

74 Prepare Fragmentation Mix

_	Reagent	1x
_	Ultra II FS Reaction Buffer	1.4 μL
_	Ultra II FS Enzyme Mix	0.4 μL
	cDNA (4-8 ng/μL)	2.5 μL
	ТЕ	1.7 μL
	Total	6 μL

Note

Ensure that the Ultra II FS Reaction Buffer is completely thawed. If a precipitate is seen in the buffer, pipette up and down several times to break it up, and quickly vortex to mix. Place on ice until use.

Α

Vortex the Ultra II FS Enzyme Mix for 5-8 seconds prior to use for optimal performance.

- 75 Vortex the **Fragmentation Mix** for 😒 00:00:05 and immediately proceed to step 70
- 76 Incubate the Fragmentation reaction as follows:

Step	Temperatur e	Time
Pre-Cool	4 C	ω
Fragmentation	37 C	5 min
A Tailing and Phosphorylation	65 C	30 min
Storage	4 C	ω

Note

Set heated lid to 75° C. Make sure the lid is at the correct temperature before you start the reaction.

Skip the first incubation step once you have added your samples.

Adapter Ligation

77 Prepare Adapter Ligation Mix

_	Reagent	1x
Γ	NEBNext Ultra II Ligation Master Mix	6 μL
	NEBNext Ligation Enhancer	0.2 μL
	prime-seq Adapter (1.5 μM)	0.5 μL

1m

10s

	Total 6.7 μL	
78	Add 4 6.7 µL Adapter Ligation Mix to each replicate	1m
79	Incubate for 👀 00:15:00 at 🖁 20 °C	15m
	Note	
	Turn off heated lid	
80	Add 📕 37.3 µL Buffer EB to Samples	1m
81	Mix Index PCR with $\boxed{4}$ 26 μ L SPRI select beads (ratio of 1:0.52)	1m
	Note	
	We use SPRI Select Beads here instead of our home made 22% Clean Up beads for their guaranteed QCed size selection properties.	
82	Incubate for 👏 00:05:00 at 🖁 20 °C (Room Temp)	5m
83	Place the plate on the magnet stand until clear and transfer 76 μl supernatant to clean well.	3m
	Note	
	Be careful not to discard! This is your sample!	
84	Mix supernatant with $\boxed{10 \ \mu L}$ SPRI select beads (ratio of 1:0.72)	1m

85	Incubate for 👀 00:05:00 at 🖁 20 °C (Room Temp)	5m
86	Place the plate on the magnet stand until clear and discard supernatant.	3m
87	Wash with $\boxed{4}$ 150 μ L of 80% EtOH while the plate is on the magnet. Discard the supernatant	1m
88	Repeat wash step once more	1m
89	Air dry beads for 🕑 00:05:00	5m
	Note	
	Depending on temperature and humidity, the beads may dry faster. Therefore it is important to regularly check the beads and avoid over-drying.	
90	Elute samples in \blacksquare 10.5 µL 0.1X TE (dilute 1X TE Buffer 1:10 in water) for \bigcirc 00:05:00	5m
Libr	rary PCR	1m
91	Transfer samples to clean wells	1m
92	Add $\boxed{1 \ \mu L}$ of Index Primer (i7, 5 uM) to each well	1m
	Note	
	This is the unique index that will be used for demultiplexing libraries.	
93	Prepare Library PCR Mix	1m
	Reagent 1x 5x	

NEBNext Ultra II Q5 Master Mix	12.5 μL	62.5 μL
P5NEXTPT5 primer (5uM stock)	1 μL	5 μL
Total	13.5 μL	67.5 μL

Although scaled down, there will not be sufficient Q5 Master Mix (M0544L) in the kit. This item will have to be ordered separately.

Note

Instead of the universal P5NEXTPT5 primer, one can use unique i5 Indices for each sample. This is recommended if using a sequencer with patterned flow cells to account for index hopping.

94 Add $4 13.5 \,\mu\text{L}$ of Library PCR Mix to each well

95 Incubate the **Library PCR** reaction as follows:

Step	Temperatu re	Time	Cycles
Initial Denaturation	98 C	30 sec	1 cycle
Denaturation	98 C	10 sec	10 cycles*
Annealing/Elongation	65 C	1 min 15 sec	
Final Elongation	65 C	5 min	1 cycle
Storage	4 C	∞	

Adjust the number of cycles based on total cDNA input.

As a general guide we recommend:

cDNA Input	Cycles
20 ng	10
10 ng	11
5 ng	12

Libra	ary Double Size Selection	30s	
96	Add $\boxed{4}$ 25 µL Buffer EB to Index PCR	1m	
97	Mix Index PCR with $426 \ \mu L$ SPRI select beads (ratio of 1:0.52)	1m	
	Note		
	We use SPRI Select Beads here instead of our home made 22% Clean Up beads for their guaranteed QCed size selection properties.		
98	Incubate for 😒 00:05:00 at 🖁 20 °C (Room Temp)	5m	
99	Place the plate on the magnet stand until clear and transfer \boxed{I} 76 μ L supernatant to	30s	
	clean well.		
	Note		
	Be careful not to discard! This is your library.		

100	Mix supernatant with $\boxed{10 \ \mu L}$ SPRI select beads (ratio of 1:0.72)	1m
101	Incubate for 👀 00:05:00 at 🕻 20 °C (Room Temp)	5m
102	Place the plate on the magnet stand until clear and discard supernatant.	3m
103	Wash with 2 150 μ L of 80% EtOH while the plate is on the magnet. Discard the supernatant	1m
104	Repeat wash step once more	1m
105	Air dry beads for 🕐 00:05:00	5m
	Note	
	Depending on temperature and humidity, the beads may dry faster. Therefore it is important to regularly check the beads and avoid over-drying.	
106	Elute in 📕 15 µL UltraPure Water.	1m
107	Incubate for 00:05:00 and then place on magnet until clear. Transfer eluted library to new well.	
	Note	
	Stopping point. The libraries can be safely stored at 20 °C until they wil be QCed and sequenced.	
Libr	ary QC	45m
108	Quantify and quality control the library using the Agilent 2100 Bioanalyzer with High	45m

Sensitivity DNA Analysis Kits.

Bulk libraries often yield high concentrations, which should be diluted to get accurate molarity measurements on the Bioanalyzer. Ideally, do not load more than 2 ng onto the chip.

Expected result

Successful libraries will typically be 2-5 ng/µl concentration

Sequencing

109 Samples should be submitted according to your Sequencing Facility specifications. At least 8 cycles are required for the Index Read (i7) and 28 cycles for the Read 1 (BC+UMI). Read 2 (DNA) should be adjusted based on the quality of the genome being mapped to, but for human and mouse 50 cycles is sufficient.

Some potential sequencing options:

Read	Read 1	Read 2	Index Read (i7)	Index Read (i5)	Kit
HiSeq	28	114	8	0	HiSeq 3000 /400 0 150 cycle s
NextSe q	28	56	8	0	NextS eq 500/5 50 HiOut v3 75 cycle
NovaSe q	28	94	8	8	Nova Seq SP v1.5 100 cycle