

Jan 12, 2024

Preservation method for long-term storage of fluorescently labeled cells for microscopy

DOI

dx.doi.org/10.17504/protocols.io.ewov1q15pgr2/v1

Jacob Robertson¹, Erin Garza²

¹University of California San Diego; ²J. Craig Venter Institute

JCVI West Protocols

Erin Garza

J. Craig Venter Institute

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

 $\textbf{DOI:}\ \underline{https://dx.doi.org/10.17504/protocols.io.ewov1q15pgr2/v1}$

Protocol Citation: Jacob Robertson, Erin Garza 2024. Preservation method for long-term storage of fluorescently labeled cells for microscopy. **protocols.io** https://dx.doi.org/10.17504/protocols.io.ewov1q15pgr2/v1

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: December 19, 2023

Last Modified: January 12, 2024

Protocol Integer ID: 92469

Keywords: Preserve, Microscopy, Fluorescence, Long-term storage, Confocal, fluorescent microscope, labeled bacterial cell, cells for microscopy, preservation method, microscopy, detectable fluorescence, labeled cell, bacterial cell, fluorescence, cell integrity, cell, term storage

Abstract

This method can be used to preserve fluorescently labeled bacterial cells for long-term storage before imaging on a fluorescent microscope. Using this protocol, samples can be saved at 4°C for weeks-months while maintaining strong, easily detectable fluorescence and cell integrity.

Image Attribution

The image was produced by the authors using a Leica SP8 confocal microscope. This is a comparative photo of biofilms expressing a fluorescent protein that were preserved and imaged after 1 week vs 5 months.

Guidelines

This protocol has been successfully used on liquid bacterial cultures and on biofilms on solid plastic material. Cells were imaged using a confocal microscope up to 5 months after preservation. Fluorescence may be maintained longer than 5 months, but has not been tested by the authors.

Materials

Microfuge tubes Glycerol Paraformaldehyde PBS 4°C storage

Troubleshooting

Safety warnings

 Paraformaldehyde is toxic and a skin irritant. Wear appropriate PPE when preparing and working with this solution.

Before start

Prepare the preservation components: 10% glycerol (sterile), 4% paraformaldehyde in PBS pH 7.4 (sterile)

Sample 2m Collect your cells (up to 500 µl) in a sterile microfuge tube. 2m - This protocol can also be used on solid material containing biofilms. **Preserve** 3m 2 2m paraformaldehyde in PBS (pH 7.4). - If preserving solid material, make sure the entire sample is submerged in the preservation solution. 3 Gently Mix 30s Storage 1m 4 Store samples at 4 °C until ready to image. 1m