

Jan 12, 2023

Version 2

Preparing MEF-cultured hPSCs for nucleofection V.2

In 1 collection

DOI

dx.doi.org/10.17504/protocols.io.bp2l611ddvqe/v2

Hangin Li¹, Oriol Busquets², Steven Poser², Dirk Hockemeyer¹, Frank Soldner² ¹University of California, Berkeley; ²Albert Einstein College of Medicine

Hangin Li

UC Berkeley

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.bp2I611ddvqe/v2

Protocol Citation: Hanqin Li, Oriol Busquets, Steven Poser, Dirk Hockemeyer, Frank Soldner 2023. Preparing MEF-cultured hPSCs for nucleofection. protocols.io https://dx.doi.org/10.17504/protocols.io.bp21611ddvqe/v2 Version created by Devin E **Snyder**

Manuscript citation:

Hanqin Li, Oriol Busquets, Yogendra Verma, Khaja Mohieddin Syed, Nitzan Kutnowski, Gabriella R Pangilinan, Luke A Gilbert, Helen S Bateup, Donald C Rio, Dirk Hockemeyer, Frank Soldner (2022) Highly efficient generation of isogenic pluripotent stem cell models using prime editing eLife 11:e79208

https://doi.org/10.7554/eLife.79208

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: January 12, 2023

Last Modified: December 13, 2024

Protocol Integer ID: 75228

Keywords: ASAPCRN, cultured hpscs for nucleofection, cultured hpsc, feeder cells for human pluripotent stem cell culture, cells for protocol nucleofection, cultured human pluripotent stem cell, human pluripotent stem cell culture, preparing plasmid, human pluripotent stem cell, delivery of plasmid, rnp for nucleofection, embryonic fibroblast, term hpsc, using nucleofection, hpsc, protocol nucleofection, preparing mef, nucleofection, plasmid, mrna, feeder cell, hesc, maintaining mef, ribonucleoprotein, rna

Funders Acknowledgements:

Aligning Science Across Parkinson's

Grant ID: ASAP-000486

Abstract

This protocol describes the procedure or preparing MEF-cultured human pluripotent stem cells (hPSCs) for the delivery of plasmids, mRNA or ribonucleoprotein (RNP) using nucleofection.

General notes

- 1. Throughout this protocol, the term hPSC is used to collectively refer to both hiPSCs and hESCs. All described procedures have been tested and work equally well for hiPSCs and hESCs.
- 2. This protocol is to prepare cells for protocol nucleofection of hPSCs. Before starting, familiarize yourself with the protocol and the required preparations. A detailed protocol on maintaining MEF-cultured hPSCs can be found in the collection "Maintenance and inactivation of mouse embryonic fibroblasts (MEFs) as feeder cells for human pluripotent stem cell culture;" doi:
- 3. Detailed protocols for preparing plasmids, RNA, and RNP for nucleofection can be found in the collection "Nucleofection (Amaxa) and electroporation (Biorad) of hPSCs." A link to this collection can be found in the title section of this protocol, located above

Materials

Item	Vendor	Catalog #
DMEM/F12	Thermo Fisher	11320082
DPBS w/o calcium and magnesium	Corning	MT21031CV
Fetal Bovine Serum (FBS)	Corning	35-011-CV
Knockout Serum Replacement	Thermo Fisher	10828-028
L-Glutamine	Sigma	G8540
Penicillin & Streptomycin (100X)	Thermo Fisher	15140163
MEM Non-Essential Amino Acids (100X)	Thermo Fisher	11140050
Heat Stable Recombinant Human FGF2	Thermo Fisher	PHG0360
Collagenase type IV	Thermo Fisher	17104019
2-Mercaptoethanol	Sigma	M3148
mTeSR-plus	STEMCELL Technologies	100-0276
StemFlex	Thermo Fisher	A3349401
Vitronectin (VTN-N) Recombinant Human Protein, Truncated	Thermo Fisher	A14700
Accutase	Thermo Fisher	SCR005
Dispase	STEMCELL Technologies	NC9995391
Y-27632	Chemdea	CD0141
Cas9, purified protein, 40uM	Macrolab, QB3 UC Berkeley	
Synthetic pegRNAs	IDT or Synthego	
Synthetic sgRNAs	Synthego	
P3 primary Cell 4D X kit S	Lonza	V4XP-3032

Item	Vendor	Catalog #
Countess™ Cell Counting Chamber Slides	Thermo Fisher	C10228
pCMV-PE2	Addgene	132775
4D-Nucleofector TM Core + X Unit	Lonza	AAF-1002B, AAF-1002X
5 ml polystyrene round- bottom tube with cell- strainer cap	Corning	352235
Cell-strainer (70 μm)	Fisher	07201431
Gene Pulser Xcell Eukaryotic System	Bio-Rad	1652661
Gene Pulser Electroporation Cuvettes, 0.4 cm gap	Bio-Rad	1652081
Exact N Amp Blood PCR Kit	Sigma	XNAB2-1TK

Note: This protocol makes reference to other protocols. Please check for any materials found in those protocols, which might not be listed here

Troubleshooting

When MEF-cultured hPSCs reach 50% confluency, change medium to hPSCs medium + Rock inhibitor, preparing for nucleofection the next day. For each 20 μl nucleofection reaction, prepare half to 1 well of cells.

A detailed protocol on maintaining MEF-cultured hPSCs can be found in the collection "Maintenance and inactivation of mouse embryonic fibroblasts (MEFs) as feeder cells for human pluripotent stem cell culture;" dx.doi.org/10.17504/protocols.io.b4pbqvin

1.1 hPSCs medium

Reagent	Volume
DMEM/F12	385 ml
Fetal Bovine Serum (FBS)	75 ml
Knockout Serum Replacement	25 ml
L-Glutamine (100X)	5 ml
Penicillin & Streptomycin (100X)	5 ml
MEM Non-Essential Amino Acids (100X)	5 ml
2-Mercaptoethanol (10,000X)	50 μΙ
Heat Stable Recombinant Human FGF2 (25µg/ml)*	80 μΙ

^{*}While we prefer Heat Stable Recombinant Human FGF2, we also have used regular FGF2. Final volume: 500 ml

L-Glutamine (100X)

	L-Glutamine, powder	14.6 g
	MilliQ H2O	500 ml

Final volume: 500 ml

2-Mercaptoethanol (10,000X)

	2-Mercaptoethanol	0.78 ml
	MilliQ H2O	9.22 ml

Final volume: 10 ml

Heat Stable Recombinant Human FGF2 (25µg/ml)

A	В
Heat Stable Recombinant Human FGF2	500 μg
0.1% BSA	20 ml

Final volume: 20 ml

Y-27632 (1,000X)

А	В
Y-27632	5 mg
DMSO	1.56 ml

hPSCs medium + Rock inhibitor, 500ml

А	В
hPSCs medium	500 ml
Y-27632 (1,000X)	500 μΙ

Final volume: 500 ml

- 2 Prepare feeder plate at least 1 day earlier as depicted in the collection "Maintenance and inactivation of mouse embryonic fibroblasts (MEFs) as feeder cell for human pluripotent stem cell culture," dx.doi.org/10.17504/protocols.io.b4pbqvin
- 3 Wash MEF-cultured hPSCs with DPBS
- 4 Add 1 ml Dissociating Solution to each well

4.1 Collagenase solution (10mg/ml)

А	В
Collagenase type IV	100 mg
KSR medium	10 ml

Final volume: 10 ml

4.2 **KSR** medium

А	В
DMEM/F12	385 ml
Knockout Serum Replacement	100 ml
L-Glutamine (200 mM)	5 ml
Penicillin & Streptomycin (100X)	5 ml
MEM Non-Essential Amino Acids (100X)	5 ml

Final volume: 500 ml

4.3 **Dissociating solution, 10ml**

А	В
Collagenase solution (10mg/ml)	1 ml
Dispase (1U/ml)	5 ml
DMEM/F12	4 ml

Final volume: 10 ml

5 Incubate \bigcirc 00:30:00 $\boxed{\$}$ 37 °C . Watch for edge curling of the colonies as indication collagenase incubation is complete.

30m

- 6 Add 2 ml DMEM/F12 to each well
- Pipette repeatedly with 5 ml pipette to lift colonies, careful not to carry over too many MEFs.
- 8 Collect into 15 ml conical tube.
- 9 Add 7 ml DMEM/F12.
- 10 Centrifuge at 200-300 x g, 00:05:00

5m

- 11 Aspirate supernatant
- 12 Re-suspend cell pellet in 1 ml pre-warmed Accutase
- 13 Incubate **3** 37 °C **3** 00:05:00

5m

- 14 Add 9 ml DMEM/F12, invert to mix
- 15 Centrifuge at 200-300 x g, 00:05:00

5m

- 16 Aspirate supernatant
- 17 Resuspend cell pellet in 1 ml DMEM/F12, triturate to single cells using P1000 tips
- 18 Take two 10 μl sets of the cell suspension. Mix each set with 10 μl trypan blue dye which comes with the Countess™ Cell Counting Chamber Slides

- 19 Count cells with Countess automated cell counter or hemocytometer, average the counts from the two sets. Continue with re-suspending the cell pellet in 20 µl nucleofection solution as described in the protocol "Nucleofection of hPSCs" (Step 2)
 - The protocol "Nucleofection of hPSCs" can be found in the collection "Nucleofection (Amaxa) and electroporation (Biorad) of hPSCs." A link to this collection can be found in the title section of this protocol, located above
- 20 Mix the cell suspension in the conical tube, take 500,000 cells per nucleofection reaction and transfer to a new conical tube
- 21 Centrifuge at 200-300 x g, 00:05:00

5m

- 22 Aspirate supernatant
- 23 Resuspend cell pellet in 10 ml DPBS
- 24 Centrifuge at 200-300 x g, 00:05:00

5m

- Aspirate supernatant as much as possible, to minimize the interference to the nucleofection buffer system.
- To proceed with the nucleofection process, refer to the protocol "Nucleofection of hPSCs;" dx.doi.org/10.17504/protocols.io.b4pcqviw