
Feb 04, 2025

Pre-processing Proteomics Data with the Alpaca Pipeline

DOI

dx.doi.org/10.17504/protocols.io.dm6gp95j5vzp/v1

Borja Ferrero Bordera

LMU Munixh

Centrum Algatech

Borja Ferrero Bordera
LMU Munixh

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and

track progress with run records.

Create free account

1

1

DOI: https://dx.doi.org/10.17504/protocols.io.dm6gp95j5vzp/v1

External link: https://github.com/borfebor/alpaca_proteomics/tree/main

Protocol Citation: Borja Ferrero Bordera 2025. Pre-processing Proteomics Data with the Alpaca Pipeline. protocols.io

https://dx.doi.org/10.17504/protocols.io.dm6gp95j5vzp/v1

protocols.io | https://dx.doi.org/10.17504/protocols.io.dm6gp95j5vzp/v1 February 4, 2025 1/8

https://dx.doi.org/10.17504/protocols.io.dm6gp95j5vzp/v1
https://www.protocols.io/researchers/n4yle1y1q105sle1
https://www.protocols.io/researchers/n4yle1y1q105sle1
https://www.protocols.io/researchers/n4yle1y1q105sle1
file:///sign-up
https://dx.doi.org/10.17504/protocols.io.dm6gp95j5vzp/v1
https://dx.doi.org/10.17504/protocols.io.dm6gp95j5vzp/v1
https://github.com/borfebor/alpaca_proteomics/tree/main
https://dx.doi.org/10.17504/protocols.io.dm6gp95j5vzp/v1
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.dm6gp95j5vzp/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: January 13, 2025

Last Modified: February 04, 2025

Protocol Integer ID: 118213

Keywords: Proteomics, Mass-Spectrometry, Absolute Quantification, Bioinformatics, Python, Exoproteome, Extracellular

proteins, alpaca, proteomics data with the alpaca pipeline data import, processing proteomics data, scale proteomics data,

proteomics analysis, foundational steps in proteomics analysis, quantitative proteomic, absolute quantification in quantitative

proteomic, proteomic, accuracy of protein quantification, alpaca pipeline data import, protein quantification, enabling

meaningful biological insight, protein, standardized format for downstream analysis, meaningful biological insight, raw

experimental data, dataset, reproducible result

Funders Acknowledgements:

People Programme (Marie Skłodowska-Curie Actions) of the European Union’s Horizon 2020 Programme
Grant ID: 813979

Abstract

Data import and pre-processing are foundational steps in proteomics analysis, ensuring that raw experimental

data is transformed into a clean, standardized format for downstream analysis. In the context of

alpaca_proteomics, these steps are critical and applicable for both relative and absolute quantification in

quantitative proteomics. Proper pre-processing removes contaminants, handles missing values, and normalizes

datasets, minimizing technical variability and enhancing the accuracy of protein quantification. This ensures

robust and reproducible results, enabling meaningful biological insights. The library streamlines these tasks,

making it highly applicable for workflows involving large-scale proteomics data.

Troubleshooting

protocols.io | https://dx.doi.org/10.17504/protocols.io.dm6gp95j5vzp/v1 February 4, 2025 2/8

https://creativecommons.org/licenses/by/4.0/
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.dm6gp95j5vzp/v1

Getting Started

1 Install Alpaca library in case it has not been installed before

pip install alpaca-proteomics

2 Import the package

from alpaca_proteomics import alpaca

3 The following packages are recommended to be imported

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

Data import

4 Alpaca works with unprocessed proteomics datasets. The package takes the protein

groups file, it has been tested with outputs from different search engines (MaxQuant,

DiaNN, Spectronaut and MSFragger). As an example, we are working with the dataset

from the exoproteome data published in Ferrero-Bordera et al. 2024. Microbiology

Spectrum.

To import the data, the function alpaca.eats() returns a dataframe with the imported

protein groups and has a first look at the conditions and intensity columns that the data

contain.

file = 'proteinGroups.txt'

df, id_col, it = alpaca.eats(file)

protocols.io | https://dx.doi.org/10.17504/protocols.io.dm6gp95j5vzp/v1 February 4, 2025 3/8

https://doi.org/10.1128/spectrum.02616-23
https://doi.org/10.1128/spectrum.02616-23
https://doi.org/10.1128/spectrum.02616-23
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.dm6gp95j5vzp/v1

The column Protein IDs was detected to contain your ProteinGroups IDs.

The following intensity methods were detected in the data: Intensity, iBAQ, LFQ

The function returned:

- df is the imported data as a pandas dataframe.

- id_col corresponds to the column which was detected to contain the Protein IDs

- it is a dictionary that groups the columns containing intensity data within each intensity

method (e.g. LFQ) In our example, the data contained 3 intensity methods (Intensity,

iBAQ, LFQ).

(Optional) Assistance on the quantification analysis

5 The framework includes a function to assess the most suitable intensity method for

absolute quantification. For that, a file containing the anchor proteins used for

quantification is needed.

The function alpaca.Consultant() accepts the imported protein groups dataframe,

together with the anchor proteins dataframe and a dictionary listing all intensity methods

and its respective columns (e.g. it). Additionally, the argument added_samples allows to

restrict the inspection to a set of samples, in case not all samples were spiked with

anchor proteins. Finally, the parameter values_per_sample serves to exclude those

proteins that have not been identified in more than X replicates (this value should be

between 0 and 1, this last one meaning that it should be in all replicates and 0 that there's

no restriction).

protocols.io | https://dx.doi.org/10.17504/protocols.io.dm6gp95j5vzp/v1 February 4, 2025 4/8

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.dm6gp95j5vzp/v1

Path to the anchor proteins file
standards_file = 'UPS2.xlsx'

Importation of the anchor proteins file (more details on these
are listed below)
st_proteins = alpaca.eats(standards_file)

Samples in which anchor proteins were added
spiked_samples = ['Before_Induction_01', 'Control_01',
'Diamide_01']

Valid values per condition
values_per_sample = 1/4

suggested = alpaca.Consultant(df,
 st_proteins,
 it,
 added_samples=spiked_samples,
 values_per_sample=values_per_sample)

5.1

Visualization of the calculated fitting scores for each
intensity method
plt.figure(figsize=(5,5))
sns.set(font_scale=1.5)

sns.heatmap(suggested.pivot(index='Normalization',
 columns='Intensity
method',
 values='score'),
 annot=True,
 cmap='viridis',
 lw=1,
 cbar_kws={'label':
'Fitting (R2)'})

protocols.io | https://dx.doi.org/10.17504/protocols.io.dm6gp95j5vzp/v1 February 4, 2025 5/8

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.dm6gp95j5vzp/v1

Data pre-processing and formatting

6 Data pre-processing and formatting are crucial steps in proteomics data analysis, as they

ensure the accuracy and reliability of downstream analyses. In the context of the

Alpaca_proteomics Python library, these steps involve importing raw data, cleaning it by

removing contaminants and decoys, and standardizing its structure to facilitate effective

analysis. Proper pre-processing minimizes technical variability and enhances the quality

of the results, leading to more robust biological interpretations.

This step is performed using the function alpaca.spits() as described below.

protocols.io | https://dx.doi.org/10.17504/protocols.io.dm6gp95j5vzp/v1 February 4, 2025 6/8

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.dm6gp95j5vzp/v1

This function reduces the complexity of the data to selected columns that contain the

key information for quantitative proteomics experiments (Protein IDs, Sample IDs and

intensity values). Additional columns could be added by passing them as a list in the

info_cols argument of the function. More details on the function parameters are listed in

the note above.

The resulting data will look somehow similar to the table below.

Data pre-processing
values_per_sample = 1/4

clean_df = alpaca.spits(df,
 lfq_method='iBAQ',
 formatting=True,
 valid_values=values_per_sample,
 normalization='Median',
 info_cols=['Accession', 'Gene names'])

Note

Parameters:

data : pandas.DataFrame

Input dataframe containing raw data for processing.
id_col : str

Column name in `df` representing unique identifiers for the dataset (e.g.,
'Accession').

lfq_method : str
Column name or method representing LFQ (Label-Free Quantification) values in the

data.
replicate_dict : dict

A dictionary mapping sample names to condition and replicate information.
cleaning : bool, optional, default=True

Whether to clean the data by removing contaminants and decoys.
formatting : str or bool, optional, default='auto'

Controls the format of the output dataframe ('auto', True, or False).
transformation : callable, optional, default=np.log2

A transformation function to apply to the data (e.g., log2).
normalization : str, optional, default='None'

Normalization method. Accepted values: 'None', 'Relative', 'Median', 'Quantile'.
valid_values : float, optional, default=0.7

Proportion of valid values required for each row to be retained.
imputation : str, optional, default=''

Method for data imputation. If empty, no imputation is performed.
**imp_kwargs : dict

Additional keyword arguments passed to the imputation function.

protocols.io | https://dx.doi.org/10.17504/protocols.io.dm6gp95j5vzp/v1 February 4, 2025 7/8

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.dm6gp95j5vzp/v1

Accession Protein Sample iBAQ Condition Replicate

C0SP82 YoaE iBAQ
Before_Ind
uction_01

2.083660 Before_Indu
ction

01

C0SP93 AccD iBAQ
Before_Ind
uction_01

2.312376 Before_Indu
ction

01

C0SP94 YhfQ iBAQ
Before_Ind
uction_01

-2.030633 Before_Indu
ction

01

C0SPA7 YukB iBAQ
Before_Ind
uction_01

-8.627621 Before_Indu
ction

01

C0SPB0 YtcI iBAQ
Before_Ind
uction_01

0.498673 Before_Indu
ction

01

protocols.io | https://dx.doi.org/10.17504/protocols.io.dm6gp95j5vzp/v1 February 4, 2025 8/8

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.dm6gp95j5vzp/v1

