

Jan 31, 2024 Version 2

Plant RNA purification using TRIzol (TRI reagent) V.2

DOI

dx.doi.org/10.17504/protocols.io.36wgq4enyvk5/v2

Diep R Ganguly¹

¹University of Pennsylvania

Pogson Group

Diep R Ganguly

University of Pennsylvania, The Australian National Universi...

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: dx.doi.org/10.17504/protocols.io.36wgq4enyvk5/v2

External link: https://doi.org/10.1073/pnas.2121362119

Protocol Citation: Diep R Ganguly 2024. Plant RNA purification using TRIzol (TRI reagent). protocols.io https://dx.doi.org/10.17504/protocols.io.36wgq4enyvk5/v2 Version created by Diep R Ganguly

Manuscript citation:

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: January 30, 2024

Last Modified: January 31, 2024

Protocol Integer ID: 94427

Keywords: plant rna purification, extraction of total rna, using trizol, total rna, rna, dna nuclease treatment, plant tissue, extraction, purification

Abstract

Extraction of total RNA from plant tissue using TRIzol (or TRI reagent) followed by DNA nuclease treatment.

Attachments

 $\underline{TRIreagent_SDS.pdf} \quad \underline{chloroform_SDS.pdf}$

196KB

134KB

Guidelines

TRI reagent and chloroform are hazardous - handle with care, operate in fume hood, wear vinly gloves and safety glasses.

Materials

- TRIzol (or TRI reagent)
- Chloroform (or chloroform : IAA [24:1])
- Isopropanol
- 80% Ethanol
- Nuclease-free H₂O (e.g. 0.01% DEPC-treated H₂O) or Tris-EDTA (10 mM Tris-Cl, pH 6.5, 0.1 mM EDTA)
- 2 mL safe-lock Eppendorf tubes
- 1.5 mL microcentrifuge tubes
- Tissue lyser or mortar and pestle
- RNase-Free DNase Set (Qiagen)
- RNA loading dye, 2X (NEB)

Safety warnings

TRI reagent - hazardous Chloroform - hazardous

Ensure you read SDS documents (attached) and organise appropriate waste vessels (fume hood).

Before start

Ensure benches and equipment are RNase free.

For RNase-Free DNase Set (Qiagen): Prepare DNase I stock solution by dissolving the lyophilized DNase I (1500 Kunitz units) in 550 µl of the RNase-free water. Mix gently by inverting the vial. Divide into single use aliquots and store at -20 °C. Thawed aliquots can be stored at 2-8°C for up to 6 weeks. Do not refreeze the aliquots after thawing.

RNA purification

- 1 Collect 50-100 mg of plant tissue and freeze immediately in liquid N_2 .
- Grind tissue to fine powder under liquid N_2 using tissue lyser or mortar + pestle, then immediately add 1 mL TRI reagent (1 mL per 100 mg tissue).

- Note, achieving a fine grind is critical to high yields of intact RNA.
- Invert each tube by hand ~20x and incubate at room temperature for 5 minutes (DO NOT vortex samples as it may result in RNA degradation).
- Add 1/5 volume of pre-mixed chloroform:isoamyl alcohol (24:1), cap tubes, shake vigorously (by hand) for 15 seconds (solution should become cloudy), then incubate at room temperature for 3 minutes.
- 5 Centrifuge at 14,000 rcf for 10 minutes at 4°C.
- 6 Transfer the upper aqueous phase to a new microfuge tube (approx. 400-600 μL).
- 7 Repeat steps 4 and 5 (approx. $300-400 \mu L$).
 - Note, if you are observing buffer and salt carryover in your purified RNA (high 230 nm absorbance), reduce volume of upper-phase recovered.
- 8 (Optional) If the expected RNA concentration is \leq 10 µg/mL, add 1/10 volume of 3M NaOAc (pH 5.5) and/or 100 µg/mL GlycoBlue (or glycogen).

*

- Add equal volume of 100% isopropanol, then mix by inverting tubes ~20x by hand.
- 10 Incubate at -20°C for 1 hour. Alternatively, incubate overnight to capture small RNAs.
- 11 Centrifuge samples at 14,000 rcf for 20 minutes at 4°C.
- Remove the supernatant, you should observe a white pellet.

- 13 Add 1 mL of 80 % ethanol and invert tube ~10x.
- 14 Centrifuge samples at 10,000 rcf for 5 minutes at room temperature.
- 15 Remove supernatant, carefully since the pellet often becomes dislodged at this step.
- 16 Air-dry pellet at room temperature for 5 minutes.
- 17 Resuspend pellet in RNase-free water (e.g. 0.01% DEPC-treated water) or Tris-EDTA (10 mM Tris-CI, pH 6.5, 0.1 mM EDTA).

DNA nuclease treatment and ethanol precipitation

- 18 Make up volume of RNA solution to 87.5 μL with nuclease-free water. This can be performed with an aliquot or total sample from the previous step.
- 19 Add 10 µL Buffer RDD and 2.5 µL DNase I stock solution (Qiagen RNase Free DNase Set) and mix with gentle pipetting.
- 20 Incubate at room temperature for 5-10 minutes.
- 21 Add 500 µL of 100% ethanol.
- 22 (Optional) Add 3 μ L glycogen or GlycoBlue, and 10 μ L NaOAc (pH 5.5) to aid RNA precipitation.
- 23 Mix by gentle inversion.
- 24 Incubate samples for at least 1 hour at -20 °C (overnight, if purifying small RNAs).

- 25 Centrifuge at 14,000 rcf at 4 °C for 20 minutes.
- 26 Remove supernatant and rinse pellet with 1 mL of 80% ethanol.
- 27 Centrifuge at 10,000 rcf for 5 minutes at 4 °C.
- 28 Remove supernatant without disturbing pellet and air-dry for 2 minutes.
- 29 Resuspend pellet in RNase-free water (e.g. 0.01% DEPC-treated water) or Tris-EDTA (10 mM Tris-CI, pH 6.5, 0.1 mM EDTA).

Quality control

- 30 Take 50-100 ng aliquot of RNA and mix 1:1 with 2X RNA loading dye (NEB).
- 31 Incubate RNA at 65 °C for 5 minutes.
- 32 Load and run samples on a 1% agarose TBE gel.
- 33 Nanodrop RNA to check for purity and quantity.