

Dec 17, 2022

Phage amplification and concentration

In 1 collection

DOI

dx.doi.org/10.17504/protocols.io.yxmvmnb86g3p/v1

Adair Borges¹, Januka Athukoralage¹

¹Arcadia Science

Arcadia Science

Arcadia Science

Arcadia Science

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

OPEN ACCESS

DOI: https://dx.doi.org/10.17504/protocols.io.yxmvmnb86g3p/v1

Protocol Citation: Adair Borges, Januka Athukoralage 2022. Phage amplification and concentration. protocols.io https://dx.doi.org/10.17504/protocols.io.yxmvmnb86g3p/v1

Manuscript citation:

Borges A, Radkov A, Thuy-Boun PS. (2022). A workflow to isolate phage DNA and identify nucleosides by HPLC and mass spectrometry. https://doi.org/10.57844/arcadia-1ey9-j808

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: June 22, 2022

Last Modified: January 30, 2024

Protocol Integer ID: 65060

Keywords: phage, gDNA, nucleoside, genome modification, HPLC, Mass spectrometry, phage amplification, bacteriophages t4, bacteriophage, amplification, concentration this protocol details method, filtration, peg precipitation, concentration, spo1

Abstract

This protocol details methods to amplify bacteriophages T4 and SPO1, and concentrate using either PEG precipitation or filtration.

Troubleshooting

Phage amplification

For each host, prepare a 30 mL subculture at 1:100 dilution (300 μ L in 30 mL). Grow for 2 h at 37 °C in a shaking incubator. Subculture media (LB or ENB) should be supplemented with 1 mM CaCl₂ and 1 mM MgCl₂.

2

Grow a 3 mL overnight culture of phage host at 37 °C with shaking. *Escherichia coli* strain B (ATCC Strain 11303) should be propagated in Lysogeny Broth (ATCC Medium 1065), and *Bacillus subtilis* strain 168M (ATCC Strain 27370) is propagated in Enriched Nutrient broth (ATCC Medium 265).

Note

ATCC Medium 265: Enriched Nutrient Broth

Heart Infusion Broth (BD 238400) - 12.5 g Nutrient Broth (BD 234000) - 5.4 g Yeast Extract - 2.5 g DI Water - 1000 ml

Autoclave at 121 °C.

Note

ATCC Medium 1065: LB Agar/Broth, Miller

LB, Miller Composition

Tryptone – 10.0 g Yeast extract – 5.0 g Sodium chloride – 10.0 g *Agar – 15.0 g

Final pH 7.0 ± 0.2. Autoclave at 121 °C.

*Omit agar for broth medium.

Note

Note: In subsequent experiments we propagated *Bacillus subtilis* strain 168M in LB broth, and amplified phage SPO1 under identical conditions as *Escherichia coli* strain B and phage T4 with no noticeable difference in bacterial or phage growth.

Add ~10⁷ PFU of phage T4 (ATCC Strain 11303-b4) to the *E. coli* subculture, and ~10⁷ PFU of phage SPO1 (ATCC Strain 27370-b1) to the *B. subtilis* subculture. Return the infected subcultures to the incubator, at 37 °C with shaking. Grow until the culture is cleared (around 5 h). If the culture doesn't completely clear within 5 h, you can let the infection proceed overnight.

Phage isolation and concentration

- 4 Move the phage lysate to a 50 mL conical tube, and add ~1 mL of chloroform. Seal the tube tightly, and shake on a platform shaker for 10–30 min. Transfer to a new conical tube. Then, spin the lysate down in a centrifuge at maximum speed for 30 minutes.
- Carefully pipette off the supernatant from the spun-down culture into a new 50 mL conical tube, avoiding any debris at the chloroform interface. Also avoid the chloroform. Move to a new 50 mL conical tube, and spin again at max speed for another 30 min or until supernatant is clear. Move to a new 50 mL conical tube.
- To concentrate the phage lysate, we have used both PEG precipitation and a filter-concentrator based protocol. The PEG protocol requires an overnight incubation, but the filter-concentrator generally requires more hands-on time. Use whichever phage concentration protocol works best for your circumstances.

STEP CASE

Phage precipitation with PEG 5 steps

PEG prep requires an overnight incubation step at 4 °C.

7 To PEG-precipitate phage, first prepare 5× PEG precipitation solution containing 2.5 M NaCl and 20% w/v PEG8000.

Note

5× PEG solution (500 mL)

5 M NaCl stock solution - 250 mL PEG8000 - 100 g DI water - to 500 mL

Stir until dissolved. Sterilize with with 0.22 µm filter. Store at room temperature.

- 8 Add PEG precipitation solution to the phage lysate to obtain a 1x concentration of 0.5 M NaCl and 4% w/v PEG8000. Mix by inverting the tube several times and refrigerate overnight at 4 °C.
- 9 After the overnight incubation with PEG precipitation solution at 4 °C, pellet the PEG precipitated phage particles by centrifuging at 19,000 × g for 60 min at 4 °C. A small white pellet should form at the bottom of the 50 mL conical tube.
- 10 Remove the supernatant, being careful not to disturb the PEG-precipitated phage pellet.
- 11 Resuspend the PEG-precipitated phage pellet in 300 µL SM buffer. Store at 4 °C.

Citations

Step 8

Bonilla N, Rojas MI, Netto Flores Cruz G, Hung SH, Rohwer F, Barr JJ. Phage on tap-a quick and efficient protocol for the preparation of bacteriophage laboratory stocks.

https://doi.org/10.7717/peerj.2261