

Oct 20, 2017

Version 2

# PBMC Isolation V.2

DOI

dx.doi.org/10.17504/protocols.io.kdycs7w

Girija Goyal<sup>1</sup>, Jaclyn Long<sup>2</sup>

<sup>1</sup>Wyss Institute, Harvard University; <sup>2</sup>Wyss Institute for Biologically Inspired Engineering at Harvard University



Girija Goyal

### Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account





DOI: https://dx.doi.org/10.17504/protocols.io.kdycs7w

Protocol Citation: Girija Goyal, Jaclyn Long 2017. PBMC Isolation. protocols.io

https://dx.doi.org/10.17504/protocols.io.kdycs7w

**License:** This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

Created: October 20, 2017



Last Modified: March 25, 2018

Protocol Integer ID: 8344

Keywords: pbmc isolation, peripheral blood mononuclear cells from whole human blood, peripheral blood mononuclear cell, apheresis pack, whole human blood, isolation

### Abstract

Commonly used protocol to isolate peripheral blood mononuclear cells from whole human blood or apheresis packs

#### Guidelines

Objective: Isolate peripheral blood mononuclear cells from fresh whole blood or apheresis packs, also referred to as Leukopaks or collars. In our case, these are platelet-depleted samples of human blood given from a donor. These can vary in volume and cell composition.

## **Troubleshooting**

## Safety warnings



• Any materials that come into contact with blood should be sterilized with 10% bleach before discarding

#### Before start

- Make sure to repeatedly label sample with donor number, especially if working with multiple donors
- The protocol here is optimized for 10ml of material from platelet apheresis collars. Variations for other sources have been described.

- Acquire blood sample from hospital (in our case, from Brigham & Women's Hospital blood donor center)
- 2 Cut collar and drain blood into 50mL conical tube.
- 3 Dilute Leukopak with equal volume RPMI or PBS. Mix well. Whole blood does not need to be diluted.
- 4 Slowly layer solution on top of 10 mL density gradient solution.
- 5 Centrifuge at 300 g for 20 minutes at room temperature. Set acceleration and deceleration levels to minimal.

\$ 22 °C

- 6 Remove white layer of PBMCs using a 5 mL pipette tip.
- Add these cells to 10 mL warm media in a 50 mL tube.
- If using 5 ml or more of the Leukopak, you may have a very high number of cells. To effectively wash them, fill tube to 50 mL.
- 9 Centrifuge at 300 g for 5 minutes. Return acceleration / deceleration levels to high or 9.
- Aspirate media and resuspend cells in 20 mL warm media per 10 ml of starting Leukopak. Steps 10-12 can be optimized depending on your yield.
- For our starting material, dilute cells serially to 1000x. First dilute 100x by adding 10ul cell solutions to 990 ul media in a 1ml eppendorf tube. Then add 10 ul of the 100x dilution to 80 ul media. Add 10 ul trypan blue to this solution.
- 12 Count cells using a hemocytometer. Count the number of cells in each of the four quadrants. Use the following formula to find the total number of cells.total # of cells = cells counted 4dilution factor 104cellsmltotal volume (ml)
- 13 Cells can be kept in solution in the refrigerator for up to two hours.

