

Jun 13, 2019

Parhyale hawaiensis embryo single cell dissociation

DOI

dx.doi.org/10.17504/protocols.io.w9zfh76

Leo Blondel¹

¹Harvard University

Leo Blondel

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.w9zfh76

Protocol Citation: Leo Blondel 2019. Parhyale hawaiensis embryo single cell dissociation. **protocols.io** https://dx.doi.org/10.17504/protocols.io.w9zfh76

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: In development

We are still developing and optimizing this protocol

Created: January 18, 2019

Last Modified: June 13, 2019

Protocol Integer ID: 19481

Keywords: parhyale hawaiensis embryo single cell dissociation, parhyale hawaiensis embryo, single cell dissociation, dissociation, cell

Troubleshooting

Work a 4C for the whole protocol.

1 For the whole protocol, work at 4C, and place all solutions on ice.

Prepare material

- 2 12 well plate
 - Tungsten needles
 - Parafilm, cut into squares a little bigger than the diameter of the well.

 - Elmer's paste or silicon seal

Coat all gear with BSA

- 3 1. Prepare 1% BSA solution in ddH2O
 - 2. Coat 1 or more wells from 12 well plate
 - 3. Coat pasteur pipettes for embryo transfers
 - 4. If using syringes for loading coat tubing and syringes

Prepare dissociation buffer and PBS Optiprep

4 Prepare dissociation buffer, for 40ml in ddH2O:

	quant ity	unit
Isethionic acid sodium	600	mg
Sodium pyrophosphate	360	mg
CAPS	88	mg
ddH2O	40	ml
Total	40	ml

Isethionic acid sodium salt: Sigma-Aldrich 220078-25G Sodium pyrophosphate tetrabasic decahydrate Sigma-Aldrich S6422-100G CAPS Sigma-Aldrich C2632-25G

Prepare 2ml PBS optiprep solutions, all volumes in ul

	5%	10%	20%	30%
10x PBS	200	200	200	200
ddH2 O	1700	1600	1400	1200
Optip rep	100	200	400	600

For 2ml final volume of 1xPBS. All volumes in ul.

Collect embryos

This protocol was tested on embryos at 12hpf to 72hpf.
From the collected females, harvest embryos in the pouch and place them in FASW.

Prepare the dissociation well

- Remove the 1% BSA from the wells of the 12 well plate and wash with dissociation buffer once. The fill halfway with the dissociation buffer.
 - On the lid, locate the position of that well and place a ring of elmer's paste that will serve as seal.
 - Place tape on the edges of the lid to allow for it to stay in place once closed.

Remove Egg Shell

- Place 30 embryos on a Sylgard plate or a 2% agar in FASW plate in a small drop.
 - Aspirate as much as possible of the FASW
 - Wash with a drop of dissociation buffer. Repeat until no precipitate is visible.
 - Using the tungsten needles, remove the egg shell around the embryos. Make sure to place the egg shells away from the embryos as they will prevent the correct dissociation.
 - Once all embryos have been separated from the egg shell, transfert them into the well filled with dissociation buffer.

Prepare the well for dissociation

Fill the well with the embryos all the way with dissociation buffer until a meniscus is visible.

- Place the parafilm square on the meniscus. THERE MUSN'T BE ANY BUBBLES TRAPPED.
- Close the lid, sealing the parafilm in place thanks to the paste, and fix it with the tape

Dissociate the cells

- 9 Place the cells on a vortex at max speed for 25 minutes
 - 00:25:00

Clean the dissociation buffer

- 10 Remove the plate from the vortex and let the cells settle for 5 minutes
 - Open the lid and assess that the dissociation worked.
 - Aspirate 1ml of liquid at the top of the well
 - Then fill from the bottom with 400 ul of 5% Optiprep PBS
 - Then 200ul of 10% optiprep
 - Then 100ul of 20% optiprep
 - And finally 300ul of 30% optiprep

Centrifuge to concentrate the cells at the 20% mark

11 Centrifuge the plate at 2500 RPM for 3-5 minutes to concentrate the cells at the margin.

Collect the cells

12 Using the BSA coated syringe, aspirate the cells collected at the 20% optipre band.