
Oct 29, 2017

Version 2

Parechovirus real-time RT-PCR V.2

DOI

dx.doi.org/10.17504/protocols.io.khpct5n

lan M Mackay¹

¹The University of Queensland

Ian M Mackay

The University of Queensland

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.khpct5n

Protocol Citation: Ian M Mackay 2017. Parechovirus real-time RT-PCR. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.khpct5n

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

Created: October 29, 2017

Last Modified: March 27, 2018

Protocol Integer ID: 8463

Keywords: parechovirus, pcr, time rt

Troubleshooting

Oligonucleotide sequences...

1 AN345_panHPeV/LV (sense primer)

GTAACASWWGCCTCTGGGSCCAAAAG

AN344_panHPeV/LV (antisense probe)

GGCCCCWGRTCAGATCCAYAGT

AN257_HPeV/LV

FAM-CCTRYGGGTACCTYCWGGGCATCCTTC-BHQ1

Reaction setup...

2 Below is the reaction setup for a single RT-PCR reaction.

Ideally, this work is conduct in a laboratory separate to any space used to perform PCR, molecular cloning or the analysis or high concentration DNA.

This volume has been used in 0.1-0.2ml tubes or various other connected tube configurations such as 100-place rings.

Multiply this according to the number of reactions you will need, remembering to include a positive control and at least two non-template controls (NTCs)

You may also need to allow some extra volume, depending on the method used to pipette mix into tubes for the run. For example, some robot-loaded tubes can require two reaction 'dead volumes'.

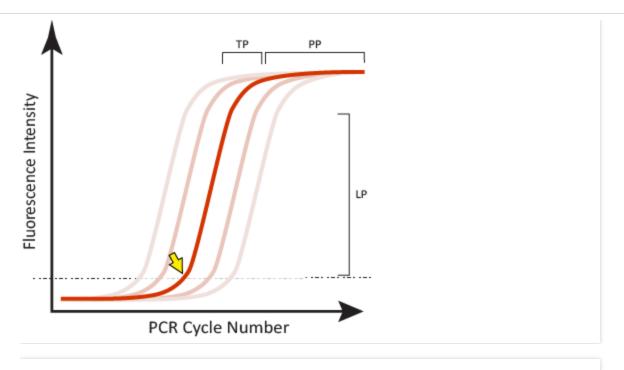
Reagent (stock concentration)	Vol (μL) / reactio	n Final concentration
Nuclease free water	4.47	N/A
AN345_panHPeV/LV (200pmol/u	0.03	300nM
AN344_panHPeV/LV (200pmol/ul	0.03	300nM
AN257_HPeV/LV FAM-BHQ1 (100pmol/ul)	0.03	150nM
2X Reaction Mix ¹	10	1X
Rox Reference Dye 25mM ¹	0.04	50nM

SuperScript® III/Platinum® <i>Taq</i> Mix ¹	0.4	1X
Template extract RNA	5	N/A
Final volume	20μΙ	

¹SuperScript® III Platinum® One-Step qRT-PCR Kit, Cat No. 11732088

Amplification...

3 This assay has been optimized and validated for use with a Rotor-Gene 6000 or Rotor-Gene Q thermal cycler.


The cycling conditions are as follows:

RT-PCR		
50°C 95°C	5min 2min	
95°C 60°C	3s 30s*	40X

^{*}Florescence acquisition step

Result calling...

- The definition used for a satisfactory positive result from a real-time fluorogenic PCR should include each of the following:
 - 1. A **sigmoidal curve** the trace travels horizontally, curves upward, continues in an exponential rise and followed by a curve towards a horizontal plateau phase
 - 2. A **suitable level of fluorescence** intensity as measured in comparison to controls using (y-axis)
 - 3. A defined threshold (C_T) value which the fluorescent curve has clearly exceeded (Fig.1 arrow) and which sits early in the log-linear phase
 - 4. A flat or non-sigmoidal curve or a curve that crosses the threshold with a C_T value
 >40 cycles is considered a negative result

Figure 1. Examples of satisfactory sigmoidal amplification curve shape when considering an assay's fluorescent signal output. The crossing point or threshold cycle (C_T) is indicated (yellow arrow); it is the value at which fluorescence levels surpass a predefined (usually set during validation, or arbitrary) threshold level as shown in this normalized linear scale depiction. LP-log-linear phase of signal generated during the exponential part of the PCR amplification; TP-a slowing of the amplification and accompanying fluorescence signal marks the transition phase; PP-the plateau phase is reached when there is little or no increase in fluorescent signal despite continued cycling.

References...

- 5 The oligonucleotides used in this assay have been previoulsy published.
 - 1. Nix WA, Maher K, Johansson ES, Niklasson B, Lindberg AM, Pallansch MA, Oberste MS. Detection of all known parechoviruses by real-time PCR. J Clin Microbiol.46(8):2519-24.